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Abstract—This paper presents a correspondence-based
toolkit for image registration. Written in C++, the toolkit
complements the capabilities of the Insight Toolkit (ITK). Major
components include features, feature sets, match generators,
error scale estimators, robust transformation estimators, and
convergence testers, all combined and controlled by several dif-
ferent registration engines. Correspondence-based algorithms
which can be implemented using the toolkit extend from ICP
to hybrids of intensity-based and feature-based registration.
The toolkit is being used both as an education tool and the
foundation for developing new algorithms.

I. INTRODUCTION

This paper presents a software architecture for
correspondence-based  registration  algorithms, RGRL
(Rensselaer  Generalized Registration Library), and
demonstrates several example algorithms and applications.
The notion of a correspondence extends from traditional
closest-point based matching [1] to recent hybrids of
intensity-based and feature-based techniques [3], [12], [20]
where the matching of image intensities creates temporary
correspondences. Correspondences, however they are
generated, are used to refine the transformation estimate.
RGRL is written in C++ and built on top of the VXL
libraries [22] which were designed for computer vision
applications. The library is actively maintained, and the
most part which is well tested is now open-source for the
purpose of research and education [15]. The remaining will
be released soon.

For image registration, there are two other well-developed
and widely-known libraries/toolkits maintained by the open-
source communities: OpenCV [2] for computer vision and
ITK [8] for medical imaging. OpenCV is a collection of
algorithms for various computer vision problems with the
focus on real-time computing, such as human-computer
interaction, recognition, and motion tracking. ITK contains
techniques for medical imaging processing, segmentation,
and registration. The focus of the ITK registration framework
is intensity-based methods. Our approach complements that
of ITK by emphasizing correspondence-based registration.
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Although we would eventually like to fully-integrate with
ITK!, our library currently compiles with ITK, allowing
components of each toolkit to be used in any program.

We are only aware of few other efforts at building open-
source software for image registration, primarily using visu-
alization packages. VTK-CISG [6] and SLICER [4] imple-
ment registration based on maximizing Normalized Mutual
Information [21] for alignment of 3D medical images. Scan-
alyze [13] is for 3D range data using Iterative Closest Point
(ICP) algorithm.

A preliminary version of the RGRL design approach
was presented in [20]. The current paper expands on this
design and describes the software architecture and its prop-
erties. The RGRL toolkit implements a general framework
for correspondence-based registration. Components of the
framework include initializers, feature sets, correspondence
generators, robust transformation estimators, and conver-
gence testers. Multiple feature types may be used either si-
multaneously or sequentially, and multiresolution is handled
naturally. The role of each component is isolated by being
designed as an abstract base class, with a wide-variety of
techniques being implemented as derived classes. Variations
on the general framework, including adaptive transformation
model selection and registration region growing [16], are
facilitated by the notion of a view, first introduced in [20].
The overall design goal of the library is to combine sim-
plicity for education on image registration and flexibility for
development of new registration techniques that fall within
the general class of correspondence-based approaches.

II. GENERAL CORRESPONDENCE-BASED
ARCHITECTURE

The framework has an inner flow loop (see Fig. 1) imple-
menting a basic but flexible correspondence framework and a
set of outer loops controlled by a “registration engine” that
allow for multiple initial estimates, multiple feature types,
and multiple stages (resolutions) to the registration process.
Together these realize a flexible, generalized correspondence-
based architecture. There is a clean separation between
computational objects and representation objects. The com-
putational objects take one or more representation objects as
input and produce a representation object as output. Each
component can be removed from the framework and used
separately. For example, the match set could be used as part
of a random-sampling search rather than a reweighted least-
squares framework. The remainder of this section describes

'Our library was not built on top of ITK because several underlying
software components pre-date ITK.



the architecture in more detail: the first few subsections
summarize the core components of the inner loop, and the
last two subsections describe the registration engine and the
view-based architecture.

A. Features, Feature Sets and Error Projectors

A feature is the basic element for correspondence-based
registration. It can be as simple as a point in space with a
location, or as complex as a region with intensity information
and orientation information encapsulated. Features can be
constructed before matching is started, or in the case of
matching intensities (block matching) (see for example [12]),
constructed as part of the matching process. To construct
features prior to registration, one may implement a feature
extractor using ITK or other VXL libraries and store the
features in a pre-defined ASCII format for the feature reader
to import the features.

Different feature types should define different alignment
error. For example, the alignment error of keypoint-to-
keypoint correspondences is best described as a Euclidean
distance, since keypoints are fairly stable point locations. For
“non-distinctive” points on curves and surfaces (e.g. blood
vessel), however, this is too restrictive a measure because
the features are often poorly localized in the direction along
the curve or on the surface. Thus, the error in the direction
normal to the curve or surface is the most appropriate error
distance measure.

To uniformly compute an error distance for different
feature types, we pre-multiply the standard Euclidean error
vector by an error projector matrix, and then compute
the magnitude of the projected vector. To better illustrate
the concept, let p be a moving image feature, q be its
corresponding fixed image feature, T be the transformation
with parameters ©, and d = T (p; ®)—q be the error vector.
Then, if q is a point on a surface, with local normal 1,
the error measure should be the normal distance |d”'7)|. By
contrast, if g is a point on a curve with tangent vector t, the
error measure should be the distance to the closest point on
a linear approximation to the contour at q: ||d — [d”t]t]|.
With the error projector, M, the square alignment error is

(T(p; ®) — q)"M(T(p; ©) — q)

Error projectors of different error types are summarized in
Table I. Section II-D explains their importance in estimation.

Each feature type is associated with a signature, which
encodes the geometric property of a feature. For instance,
the resolution scale at which the feature is detected is
part of the signature. For point-on-curve/point-on-surface,
the tangent/normal direction is also included. Use of the
signature provides additional information for the similarity
of two matching features, which can serve as a weight for
the correspondence. Taking point-on-surface for instance, let
(sq>7,) and (sp,1,,) be the scale-direction signatures for q
and T(p; ©), respectively. Assuming s, > s, the signature
similarity for a point-on-surface correspondence is defined as
(sp/ sq)|17qTﬁp|. Different signature properties can be easily
handled by deriving from existing feature types.

All features of the same type from one image are stored
in (or generated from) a feature set. Fundamentally, feature
sets answer queries in support of correspondence generation.
Examples include finding the nearest feature in the fixed
image to a given feature (mapped from the moving image),
finding the k-nearest neighbors, or even finding all features in
a given region when multiple correspondences are required
for a feature (see for example [5]). Spatial data structures
such as k-d trees and digital distance maps support fast
querying. A specialized feature set may store an image
and generate features by finding matches using intensity
comparisons over a given region.

B. Initialization

The initializer provides the first set of matches required at
the start of the iterative process illustrated in Fig 1. The
interface to the initializer object defines only the request
to provide the next initial estimate, which is passed to
the main body of the registration engine for refinement.
This isolates initialization from the rest of the algorithm.
Besides the initializer with a prior transformation, a number
of common initialization techniques have been implemented
as the derived classes:

+ Random-sampling initializer: Random-sampling is
performed on a pre-computed match set. The initializer
returns only one transformation, which is the best
estimate out of the random-sampling process.

« Invariant-indexing initializer: The initializer generates
a list of landmark/keypoint matches by comparing fea-
ture descriptors invariant to some low-order transfor-
mation models, for example, similarity [9], [16]. The
matches are ranked in descending order, and each match
provides an initial transformation. At each request for
the next initial estimate, the next available match in the
list is returned for refinement.

e Moments-based initializer: The initializer returns a
similarity transformation that best aligns the first and
second moments of the two point sets from the image
pair.

o Gradient-based initializer: Building on top of the
invariant-indexing initializer, the transformation is re-
fined using images of directional gradient magnitudes
and the steepest-descent minimization technique.

TABLE I
ERROR PROJECTOR MATRIX FOR DIFFERENT TYPES OF ERRORS. FOR A
POINT ON A CURVE, t IS THE TANGENT TO THE CURVE, AND FOR POINT
ON A SURFACE, 7) IS THE NORMAL TO THE SURFACE. m IS THE NUMBER
OF DIMENSIONS OF THE IMAGE. ALL ERROR TYPES ARE APPLICABLE IN
2D AND 3D, BUT POINT-TO-CURVE AND POINT-TO-SURFACE ARE ONLY
DIFFERENTIABLE IN 3D.

Error Type point-to-point | point-to-curve | point-to-surface
Error Projector M=1I M=1I-tt? M= ﬁﬁT
DoF to Constraint m m-1 1




X Moving Feature Set
Moving Image

. Transform Estimate -
Initialization |-===----=====-------- Matching

Robust
Transformation
Estimation

Matches

Transform Estimate

v

Fixed Image

Fixed Feature Set

Fig. 1.

Converg. Status
(failed)

Convergence Testing

Converg. Status
(passed)

Architecture of the inner loop of general correspondence-based registration. Each computational component, enclosed in the box, takes one or

more representation objects as input, and produces one representation object as output, indicated by the arrow. All representation objects constructed stay
in the loop until re-computed. The dashed arrow indicates the flow of object which is only used once for initialization.

Other initializers, such as coarse sampling of a small
parameter space, could be easily added to the library in the
future.

C. Matching

The matcher is responsible for computing the correspon-
dences and constructing a match set data structure to store
them. Two matching techniques are implemented (as derived
classes):

o K-nearest matcher: This matcher can use different
“nearness” measures, such as Euclidean distance and
signature-based similarity measures [3], [14], to de-
termine the %k nearest neighbours (allowing multiple
correspondence per feature). When £ = 1 and “near-
ness” is defined by Euclidean distance, this becomes
the classical ICP matcher.

o Block matcher: This is an algorithm that creates a
temporary correspondence (and feature) by taking a
small region centered on a feature in the moving image
and finding the best corresponding region in the fixed
image based on an intensity match.

D. Transformation Objects and Estimators

The transformation object represents the current estimate
of the transformation and its uncertainty. It provides the
ability to map image locations and direction vectors (ap-
proximately for non-rigid transformations). Transformation
models currently implemented include translation, rigid, sim-
ilarity, affine, quadratic, hierarchical B-splines, homography,
and homography with radial lens distortion.

For each transformation model there is an associated
estimator. Each takes a set of matches and constructs a
transformation estimate. This estimate generally includes the
covariance matrix of the estimated transformation parameter
vector.

All estimators share two important properties:

o Each estimator computes a weighted (non-linear) least-
squares estimate of the transformation. Centering and
normalization are used to increase numerical stability.

o Constraints are constructed using the error projector
(Table I). Therefore, the estimators need not know
anything about the feature types forming the matches.
This means new feature types (there are five currently)
may be added without having to change the estimators.

E. Robust Estimation

Robust estimation must be incorporated into the toolkit to
avoid the inevitable incorrect matches. M-estimators are used
in RGRL, implemented using iteratively reweighted least-
squares [17]. This requires weighting functions and robust
estimation of the standard deviation of the errors (the error
“scale”). Weighter objects compute the weights for each
match and store them back with the matches in the match
set. Several types of weight calculations are implemented,
including standard M-estimator weighting, weighting based
on feature similarities, and competitive weighting, if mul-
tiple matches for each feature. Error scale estimation is
implemented in two ways: weighted techniques compute
simply the (robustly) weighted average of the square errors;
unweighted techniques use the MUSE algorithm [11], which
automatically determines the fraction of “inlier” matches.
The error scale determines the correctness of the estimation.

F. Convergence Testing

A convergence tester determines whether the registration
process should terminate for the current initial estimate. The
result of testing is stored in a convergence status object.
Three termination criteria are currently implemented: (1) the
estimation has converged with the change of alignment error
below certain threshold, (2) the estimation is oscillating, and
(3) the stability, which is the inverse of the largest transfer
error [7, Ch. 3] of the sampled points, is above a threshold.

Both weighted and unweighted convergence testers are im-
plemented as derived classes. The alignment error computed
by the weighted tester is the weighted average of the errors,
while the unweighted tester returns the median error.

G. The Registration Engine

The framework is encapsulated in the registration engine,
which automatically handles multiple initial estimates, mul-
tiple feature types, and multiple stages:

o Multiple initial estimates: The engine loops through
the set of initial estimates from the initializer. If any of
the initial estimate leads to a satisfactory final estimate,
the engine terminates immediately. If no estimate satis-
fies the termination criteria, the overall best estimate is
returned.

o Multiple feature types: The estimate of the transforma-
tion can be computed from multiple feature sets using



different feature types. An example would be combi-
nation of fiducial and surface points for registration
of CT images of the head [10]. Each feature set pair
is accompanied by a matcher, a weighter and a scale
estimator.

o Multiple stages: A stage contains the transformation
model(s), and a set of feature set pairs which are
used together to estimate a single transformation. The
transformation model(s) can differ between stages, and
the final estimate from one stage is used as the initial
estimate in the next. This is used to realize multireso-
lution feature-based registration.

The flow-diagram in Fig 1 above illustrates the simplest
scenario: one initial estimate, one feature set pair and one
stage.

H. View-Based Architecture

Another level of flexibility is achieved by allowing view
generation, as illustrated in Fig 2. A view is a snapshot of
the status of the registration process. It is a combination of
a stage (resolution), a transformation model and estimate,
and an image region over which the model currently applies.
The view-based framework unifies a number of variations of
general correspondence-based registration.

Through the manipulation of the view, the view generator
may define complex behavior during registration. We have
implemented a class of bootstrap view generators [16], [24],
which applies the uncertainty in the transformation estimates
to automatically control either or both region growth and
model selection throughout the registration. Different model
selection criteria can be plugged into the view generator.
Other variations of correspondence-based registration can be
built into the view-based framework in the future by defining
new view generators.

III. ALGORITHMS AND APPLICATIONS

Well-documented tutorial examples are provided with the
library, following the style of the ITK software guide [8].
Further examples will be provided as the toolkit matures and
the application base widens. This section presents four exam-
ple algorithms?, each with an application fully-implemented
using the toolkit:

o Iterative Closest Point (ICP): Standard ICP [1] is
implemented using a single stage and matching using
a k-nearest neighbor matcher with k¥ = 1. By simply
setting different feature types the toolkit switches be-
tween registration of 3D neurons (point-on-curve) and
registration of range images (point-on-surface).

o Dual-Bootstrap Iterative Closest Point (DB-ICP): We
re-implemented DB-ICP algorithm [16], [19] using the
toolkit. DB-ICP registers retinal fundus and fluorescein
images (Fig 3). As alluded to above, the initializer
automatically generates possible vascular landmark cor-
respondences by matching invariant signatures. Each

2Some components allow parameter tuning for better efficiency, not
robustness. However, we tested each of the 4 example algorithms with a
fixed set of parameters.

correspondence is used to initialize a view that contains
a low-order transformation and a small image region.
Dual-bootstrap view generation, controlling ICP regis-
tration, grows initial and refines estimates to obtain final
estimates. For the retina application, the final model is
quadratic.

o Generalized Dual-Bootstrap Iterative Closest Point
(GDB-ICP): Extending DB-ICP, we developed a sys-
tem capable of aligning image pairs having some com-
bination of low overlap, substantial orientation and scale
differences, substantial illumination changes, substantial
scene changes, and different modalities [24]. With
the DB-ICP framework in place, we achieved gen-
eralization by doing generic feature extraction, non-
linear estimation of homography (with lens distortion),
and sophisticated acceptance criteria based on accuracy,
stability and consistency of the matched features. The
generic features are multi-scale corner and face points.
The invariant-indexing initializer generates rank-ordered
Lowe’s keypoint [9] matches based on SIFT descriptors.
The initial transformation is refined in DB-ICP fashion
using multiple feature types, corner and face points,
simultaneously. An example mosaic of images with low
overlap and illumination changes are shown in Fig 4.
The executable is available online at [23].

o Iterative Most Similar Point (IMSP): We developed
an algorithm for hybrid feature-based and intensity-
based registration. Feature sets from the moving image
are matched to the intensity structure of the fixed image,
generating temporary features and correspondences.
Similarity-based weighting is used and the uncertainty
in the alignment is used to control the search range for
correspondences. Multiple resolution stages are used as
well. Details are in [18]. An example alignment of serial
lung CT images in B-spline deformable registration is
shown in Fig 5.

IV. CONCLUSION AND DISCUSSION

This paper presented a software toolkit that realizes a gen-
eralized architecture for correspondence-based registration.
The toolkit is designed for two levels of interaction. The
first level consists of the registration engines and sample
applications. It is targeted at both the practitioner who wants
to just use the various registration algorithms and at the
researcher who wants to experiment with new techniques
within the framework of iterative correspondence-based reg-
istration algorithm by specializing one or more of the objects.
The second level consists of the independent components,
which can be used to develop new registration engines and
applications, expanding the scope of research questions to
which RGRL may be applied.

Well-documented tutorial examples are provided with the
library, starting with the simplest form of registration, and
proceeding slowly up and including view-based registration.
We built these following the example of ITK [8] and have
found them to be extremely useful as a teaching tool in our
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Fig. 2. Architecture of the inner loop of view-based registration. View generation defines complex behavior during registration, such as growth of region
for registration and selection of the transformation model which is most appropriate for the the current view.

Fig. 3.

Multimodal retinal image registration of a diseased eye using DB-ICP technique. The top row contains the red-free (left) and the fluorescein

angiogram (right) images. Bottom-left: The initial alignment of the two images with a similarity transformation which is only good in the initial bootstrap
region, shown as the grey box. Vessels extracted are shown in black on the red-free image and white on the fluorescein angiogram image. Bottom-right:
The final alignment with sub-pixel accuracy using a quadratic model. The bootstrap region covers the entire overlap region between the two images.

courses. Further examples will be provided as the toolkit
matures and the application base widens.

RGRL complements ITK, which focuses on intensity-
based registration. Our eventual goal is to fully integrate
RGRL with ITK to expand its dual-purpose role in teaching
and research.
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Fig. 4.

Registration of a challenging image pair using GDB-ICP technique. The top row contains two images which were taken of Brugge Tower.

Challenges for this image pair include illumination changes, and low overlap. The bottom image is a checker board image of the alignment result. The
entire process is fully automatic, and the final alignment has sub-pixel accuracy using the transformation model of homography with radial lens distortion.

Fig. 5.

An example of B-spline based registration, using IMSP, of 2 intra-patient 3D CT volumes taken 4 months apart. The figure shows checkerboard

results (alternating blocks from the two images) in a single slice following alignment.
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