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(57) ABSTRACT

A method and system for detecting multiple objects in an
image is disclosed. A plurality of objects in an image is
sequentially detected in an order specified by a trained hier-
archical detection network. In the training of the hierarchical
detection network, the order for object detection is automati-
cally determined. The detection of each object in the image is
performed by obtaining a plurality of sample poses for the
object from a proposal distribution, weighting each of the
plurality of sample poses based on an importance ratio, and
estimating a posterior distribution for the object based on the
weighted sample poses.
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METHOD AND SYSTEM FOR MULTIPLE
OBJECT DETECTION BY SEQUENTIAL
MONTE CARLO AND HIERARCHICAL
DETECTION NETWORK

This application claims the benefit of U.S. Provisional
Application No. 61/321,224, filed Apr. 6, 2010 and U.S.
Provisional Application No. 61/424,710, filed Dec. 20, 2010,
the disclosures of which are herein incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates to object detection in medical
images, and more particularly, to multiple object detection
using sequential Monte Carlo and a hierarchical detection
network.

Multiple Object Detection has many applications in com-
puter vision systems, for example in visual tracking, to ini-
tialize segmentation, or in medical imaging. For example, in
medical imaging, multiple anatomic objects having a spatial
relationship with each other can be detected. State of the art
approaches for multi-object detection typically rely on an
individual detector for each object class followed by post-
processing to prune spurious detections within and between
classes. Detecting multiple objects jointly rather than indi-
vidually has the advantage that the spatial relationships
between the objects can be exploited. However, obtaining a
joint model of multiple objects is difficult in most practical
situations.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a method and system for
multiple object detection in medical images. Embodiments of
the present invention utilize sequential Monte Carlo estima-
tion to sequentially detect multiple objects. Embodiments of
the present invention use the relative locations of the objects
to provide constraints to focus the search for each object in
regions where the object is expected based on the locations of
the other objects. Embodiments of the present invention auto-
matically select the optimal order for object detection.

In one embodiment of the present invention, a plurality of
objects are sequentially detected in an image in an order
specified by a trained hierarchical detection network. The
detection of each object in the image is performed by obtain-
ing a plurality of sample poses for the object from a proposal
distribution of object poses for the object, weighting each of
the plurality of sample poses based on an importance ratio
calculated for each sample pose, and estimating a posterior
distribution for the object based on the weighted sample
poses.

In another embodiment of the present invention, a hierar-
chical decision network for detecting multiple objects in an
image is trained. A plurality of object detectors, each corre-
sponding to one of the plurality of objects, are individually
trained using a first set of annotated training data. A detection
order for detecting the plurality of objects is automatically
determined using a second set of annotated training data and
the trained object detectors.

These and other advantages of the invention will be appar-
ent to those of ordinary skill in the art by reference to the
following detailed description and the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a method for detecting multiple objects in
a medical image according to an embodiment of the present
invention;
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FIG. 2 illustrates a sequence of observations in a volume;

FIG. 3 illustrates a method of detecting an object using
sequential sampling according to an embodiment of the
present invention;

FIG. 4 illustrates a method of training a hierarchical detec-
tion network according to an embodiment of the present
invention;

FIG. 5 illustrates detection order selection for a hierarchi-
cal detection network;

FIG. 6 illustrates five atrium landmarks of the left atrium in
an A2C ultrasound image;

FIG. 7 illustrates a graph comparing the error for a mean
sampling strategy and the k-means sampling strategy;

FIG. 8 illustrates a score value plotted for object detection
stage for an automatically selected detection order and 100
random cases;

FIG. 9 illustrates hierarchical detection network generated
by automatic object detection order selection for the atrium
landmarks of FIG. 6;

FIG. 10 illustrates a plot of the final detection error vs. the
score calculated for the automatically selected object detec-
tion order and the 100 random orders;

FIG. 11 illustrates detection results for detecting the five
atrium landmarks in exemplary A2C ultrasound images;

FIG. 12 illustrates a hierarchical detection network trained
for fetal brain structure detection;

FIG. 13 illustrates exemplary detection results for the cer-
ebellum, the cisterna magna, and the lateral ventricles ina 3D
ultrasound;

FIG. 14 illustrates exemplary detection results for fetal
face detection in 3D ultrasound data

FIG. 15 illustrates a network that corresponds to a marginal
space learning algorithm for estimating the pose of an object;

FIG. 16 illustrates two possible hierarchical detection net-
works for cerebellum detection;

FIG. 17 illustrates two possible corpus callosum detection
pipelines;

FIG. 18 illustrates cerebellum annotations at 4 mm, 2 mm,
and 1 mm, resolutions;

FIG. 19 illustrates detection results for the cerebellum and
the corpus callosum in a 3D ultrasound volume;

FIG. 20 illustrates a boundary detection network for detect-
ing a liver boundary in a 3D MRI volume;

FIG. 21 illustrates exemplary liver boundary detection
results in MRI slices; and

FIG. 22 is a high-level block diagram of a computer
capable of implementing the present invention.

DETAILED DESCRIPTION

The present invention relates to multiple object detection in
medical images. Embodiments of the present invention are
described herein to give a visual understanding of various
organ classification methods. A digital image is often com-
posed of digital representations of one or more objects (or
shapes). The digital representation of an object is often
described herein in terms of identifying and manipulating the
objects. Such manipulations are virtual manipulations
accomplished in the memory or other circuitry/hardware of a
computer system. Accordingly, is to be understood that
embodiments of the present invention may be performed
within a computer system using data stored within the com-
puter system. Embodiments of the present invention may be
applied to different imaging modalities, including but not
limited to ultrasound, computed tomography (CT), magnetic
resonance imaging (MRI), etc.
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Since obtaining ajoint model of multiple objects is difficult
in many practical situations, the multi-object detection task
can be solved using multiple individual object detectors con-
nected by a spatial model. Relative locations of the objects
provide constraints that help to make the system more robust
by focusing the search for each object in regions where the
object is expected based on locations of the other objects.
Challenging aspects of such algorithms is designing detectors
that are fast and robust, modeling the relationships between
the objects, and determining the detection order. Embodi-
ments of the present invention provide a method and appara-
tus for multiple object detection that address the above
described challenges.

The computational speed and robustness of the multiple
object detection method described herein can be increased by
hierarchical detection. In multiple object detection, one prob-
lem is how to effectively propagate object candidates across
levels of the hierarchy. This typically involves defining a
search range at a fine level where the candidates from the
coarse level are refined. Incorrect selection of the search
range leads to higher computational speeds, lower accuracy,
or drift of the coarse candidates towards incorrect refine-
ments. The search range in embodiments of the present inven-
tion is part of the model that is learned from the training data.
The performance of the multi-object detection method can be
further improved by starting from objects that are easier to
detect and constraining the detection of other objects by
exploiting the object configurations. The difficulty of this
strategy is selecting the order of detections such that the
overall performance is maximized. In embodiments of the
present invention, the detection schedule is designed to mini-
mize the uncertainty of detections. Using the same algorithm
used to optimize the order of object detections, the optimal
schedule of hierarchical scales for detecting objects can also
be obtained.

Embodiments of the present invention utilize sequential
estimation techniques that are frequently applied to visual
tracking. In visual tracking, the goal is to estimate, at time t,
the object state x, (e.g., location and size) using observations
Yo, (object appearance in video frames). This computation
requires a likelihood of a hypothesized state that gives rise to
observations and a transition model that describes the way
states are propagated between frames. Since the likelihood
models in practical situations lead to intractable inference,
approximation by Monte Carlo methods, also known as par-
ticle filtering, have been widely adopted. At each time step t,
the estimation involves sampling from the proposal distribu-
tion p(X,Xy.,.1, Yo.,) of the current state x, conditioned on the
history of states X, , up to time t—1 and the history of obser-
vations Y., up to time t.

Embodiments of the present invention use the sequential
Monte Carlo technique in multi-object detection. The mul-
tiple object detection method described herein samples from
a sequence of probability distributions, but the sequence
specifies a spatial order rather than a time order. The posterior
distribution of each object pose (state) is estimated based on
all observations so far. The observations are features com-
puted from image neighborhoods surrounding the objects.
The likelihood of a hypothesized state that gives rise to obser-
vations is based on a deterministic model learned using a
large database of annotated images. The transition model that
describes the way poses of objects are related is a Gaussian
distribution.

Other object detection algorithms have typically focused
on a fixed set of object pose parameters that are tested in a
binary classification system. In embodiments of the present
invention, employing the sequential sampling allows for the
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use of fewer samples of the object pose. This saves compu-
tational time and increases accuracy since the samples are
taken from regions of high probability of the posterior distri-
bution. Unlike in tracking, where the sequential order is natu-
rally determined by time progression, the order in multi-
object detection must be selected. In embodiments of the
present invention, the order is selected such that the uncer-
tainty of the detections is minimized. Accordingly, instead of
using the immediate pre-cursor in the Markov process, the
transition model can be based on any precursor, which is
optimally selected. This leads to a Hierarchical Detection
Network (HDN), which is explained in greater detail below.
The likelihood of a hypothesized posed is calculated using a
trained detector. The detection scale is introduced as another
parameter of the likelihood model and the hierarchical sched-
ule is determined in the same way as the spatial schedule.

FIG. 1 illustrates a method for detecting multiple objects in
a medical image according to an embodiment of the present
invention. As illustrated in FIG. 1, at step 102, a medical
image is received. The medical image can be an image
obtained using any imaging modality, including but not lim-
ited to, ultrasound, MRI, and CT. The image may be a 2D
image or a 3D image volume. The medical image can be
received directly from an image acquisition device, such as an
ultrasound device, an MR scanner, or a CT scanner. It is also
possible that the medical image is received by loading a
medical image previously stored, for example, on a storage or
memory of a computer system being used to implement the
multiple object detection method.

At step 104, multiple objects are sequentially detected in
the medical image using sequential Monte Carlo sampling in
a spatial order specified by a trained hierarchical detection
network. The hierarchical detection network is trained based
on annotated ground truth training data to automatically
select an order of object detection and a spatial hierarchy for
the object detection. Sequential Monte Carlo sampling is used
to detect the objects in the order specified by the hierarchical
detection network, resulting in an estimated pose (location,
orientation, and scale) of each of the objects in the medical
image. At step 106, the detection results for the multiple
objects are output. For example, the detection results can be
output by displaying the detected objects in the medical
image. It is also possible that the detection results can be
output by storing the detection results, for example on a
memory or storage of a computer system or on a computer
readable medium.

As described above, at step 104 of the method of FIG. 1,
multiple objects are detected in an image using sequential
Monte Carlo sampling. The state (pose) of a modeled object
t is denoted as 6, and the sequence of multiple object detec-
tions is denoted as 6,,~{8,, 0,, . . ., 8,}. As used herein,
8,={p, r, s} denotes the position p, orientation r, and size s of
the object t in the image. The set of observations for object t
are obtained from the image neighborhood V,. The neighbor-
hood V, is specified by the coordinates of a bounding box
within a d-dimensional image V, V:R?—[0, 1]. The sequence
of observations is denoted as V., ={V,, V,, ..., V,}. This is
possible since there exists prior knowledge for determining
image neighborhoods V,, V4, . . ., V,. The image neighbor-
hoods in the sequence V., may overlap and can have different
size. An image neighborhood V, may even be the entire vol-
ume V. FIG. 2 illustrates a sequence of observations V,,
Vi, ..., V,in avolume V. As shown in FIG. 2, the set of
observations V,, V,, ..., V, is a sequence of image patches.
This sequence specifies a spatial order within an image, rather
than a time order that is typically exploited in tracking appli-
cations.
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The observations V, with a marginal distribution f(V,10,)
describe the appearance of each object are assumed to be
conditionally independent given the state 0,. The state
dynamics, i.e., the relationships between the poses of the
different objects, are modeled with an initial distribution f(0,)
and a transition distribution f(0,10,., ;). It can be noted that
embodiments of the present invention do not use the Markov
transition £{0,10, ), as used in tracking applications.

The multi-object detection step (step 104 of FIG. 1) is
performed by recursively applying prediction and update
steps to obtain the posterior distribution f(0,., ;1V,., ;). The
prediction step computes the probability density of the state
of the object t using the state of the previous object t-1 and
previous observations of all objects up to t-1:

SO0 Vo 1)7/0100.. 1) 00.0-1Vorr1)- (6]

When detecting the object t, the observation V, is used to
compute the estimate during the update step as:

f(vr | Or)f(eo:r | Vou-1) (2)

0-1 V:r =
PO Vou) = =0 VD

where f(V,IV,., ;) is the normalizing constant.

As simple as the above expressions may seem, these
expressions do not have an analytical solution in general. This
problem is addressed by drawing m weighted samples {6/,
w/},-," from the distribution f{0,,,V,.,), where {0,./} _," is
a realization of state 0., with weight w/.

In most practical situations, sampling directly from (0.,
Vo) is not feasible. Accordingly, embodiments of the
present invention utilize the ides of importance sampling to
introduce a proposal distribution p(0,_,/V,.,) which includes
the support of f(0,.,1V,.,).

In order for the samples to be proper, the weights are
defined as:

o Vo | 801 ®

' p(%:r | Vour)

wi=w [ S
i=1

Since the current states do not depend on observations from
other objects, then:
P00, Vo.)=p(00..11Vo. 1)P(0100..1,V5..)- @

The states are calculated as:

: )
F o= FO] ] £0;1605-0).

J=1
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Substituting (4) and (5) into (3), results in:

R (UL YC) ©
P01 | Vou1 )P0 18041, Vour)
FVor |00 £(8.0)
S Wourt | 8- F@-)p O] | 81 Vou)
ALY
PO 1641, Vo)

=W

o

- ®

Embodiments of the present invention utilize the transition
prior (8710, /) as the proposal distribution. Hence, the
importance weights can be calculated as:

wi=w, JV)67). ©
It is to be understood that the present invention is not limited
to the above proposal distribution, and more sophisticated
proposal distributions can be designed to leverage relations
between multiple objects during detection.

When detecting each object, the sequential sampling pro-
duces an approximation of the posterior distribution (0, .,
V,.,) using the samples from the detection of the previous
object. FIG. 3 illustrates a method of detecting an object using
sequential sampling according to an embodiment of the
present invention. The method of FIG. 3 is repeated for each
object in order to implement step 104 of FIG. 1. At step 302,
m samples are obtained from the proposal distribution 8/~p
(6/10,.,./). That is, a plurality of sample poses for the object
t are calculated based on the proposal distribution from
samples of the previous objects. The proposal distribution for
an object is a predicted distribution of object poses that is
calculated based on at least one previous object. It is to be
understood that, for the first object detected, the proposal
distribution is not based on previous objects. The proposal
distribution for the first object may include all possible poses
within the image data or may be a distribution of poses of the
first object learned from annotated training data.

According to an advantageous implementation, the transi-
tion kernel f(6/16,,.,_ /) is adopted as the proposal distribution.
In tracking applications, a Markov process is typically
assumed for the transition kernel f(6;10,., /)=f(6/16, /), as
time proceeds. However, the Markov process is too restrictive
for multiple object detection. In multiple object detection, the
best transition kernel may stem from an object other than the
immediate precursor, depending on the anatomical context.
Accordingly, a pairwise dependency can be used, such that:

£18,186,..)=16,10)7€e{0,1, . . . 4-1}. (10)

Accordingly, the proposal distribution for an object being
detected can be calculated from any precursor object, not just
the immediate precursor. According to an advantageous
implementation, (8,16,) can be modeled as a Gaussian distri-
bution estimated from the training data. The precursor j for
each object is automatically selected in the training of the
hierarchical detection network. This training is described in
greater detail below.
At step 304, each sample pose for the object is weighted
based on the importance ratio
Wi=w, JfV,167). an
The importance weights can be normalized. A random vari-
able can be defined, such that ye{-1, +1}, where y=+1 indi-
cates the presence of the object and y=-1 indicates the
absence of the object. To leverage the power of a large anno-
tated dataset, a trained discriminative classifier is used in the
observation model:

AVI0,)=fy=+116,V,), (12)
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where f(y=+110,, V,) is the posterior probability (determined
by the trained classifier) of object presence at 0, in V,. The
discriminative classifier is trained from the annotated training
data. According to a possible implementation, the classifier
can be a probabilistic boosting tree (PBT) classifier. An indi-
vidual classifier (detector) is trained for each object to be
detected.

At step 306, the posterior distribution is estimated for the
object and all previously detected objects based on the
weighted samples. In particular, the weighted samples are
resampled using their importance to obtain the unweighted
approximation of f(0,.,1V,.,):

o _ 13)
Fo| Vo) = 3" /(60— 0,),

J=1

where 8 is the Dirac delta function. Accordingly, at the detec-
tion of each object, the posterior distribution estimated for the
previous objects is updated. In particular, after each landmark
detection, a certain number of samples having the strongest
weight can be kept for the object, and the location (pose) of
each object can be determined by averaging the strongest
samples for each object. The method of FIG. 3 is repeated for
all of the objects, in the predefined order detected during
training. Once the method of FIG. 3 has been repeated for all
of the objects, the final posterior distribution results in the
most likely poses for all of the objects.

FIG. 4 illustrates a method of training a hierarchical detec-
tion network according to an embodiment of the present
invention. The method of FIG. 4 utilizes training data anno-
tated with ground truth poses for the objects to be detected.
Unlike in a video, where the observations arise in a natural
sequential fashion, the spatial order in multi-object detection
must be selected. The goal is to select the order such that the
posterior probability P(0,.,1V,.,) is maximized. Since deter-
mining this order has exponential complexity in the number
of'objects, a greedy approach is used. The training data can be
split into two sets. As illustrated in FIG. 4, at step 402, the
object detectors (classifiers) for the objects are trained indi-
vidually using the first set of training data. The object detec-
tors are trained to obtain posterior distributions f(0,, V), {(6,,
V), ..., 1(0,,V,) of the respective objects based on features
(observations) extracted from the image data. According to a
possible implementation, each object detector can be a proba-
bilistic boosting tree (PBT) classifier, but the present inven-
tion is not limited thereto.

At step 404, the detection order is automatically selected
based on the second set of training data and the trained object
detectors. This step organizes the trained object detectors into
a hierarchical detection network (HDN). FIG. 5 illustrates an
HDN 500. The HDN is a pair-wise, feed-forward network. As
shown in FIG. 5, each node 502, 504, 506, 508, 510, 512, and
514 of the HDN 500 represents a trained detector for a cor-
responding object (0), (1), (2), (s-3), (s-2), (s-1), and (s),
respectively. The HDN is trained by recursively selecting the
best remaining detector to add to the network. The first detec-
tor ((0) in FIG. 5) corresponds to the easiest object to detect
correctly.

Referring to FIG. 5, suppose that the ordered detectors
have been determined up to s-1, 0, 0, . . ., 0, ;. The training
method then must determine which object’s (s) detector to
add to the network and to which precursor object (j) it should
be connected. The method adds to the network the best pair
[5,(1)] (or feed-forward path) that maximizes the expected
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value of the following score S[s,(j)] over both s and (j) cal-
culated from the second training set:

Shs, (D] = (14)

f . FOo:s-1) | Vios- 1) F (05 100) f (Vs 89)d0,d 6051,
O50(Bs)

00:5-1E0B(0.5_1))

where Q(6) is the neighborhood region around the ground
truth 6. The expected value is approximated as the sample
mean of the cost computed for all examples of the second
training set. In the HDN 500 of FIG. 5, the next detector was
selected for object s with the precursor object (j) of (s-2).

Returning to FIG. 4, at step 406, the scale hierarchy for the
object detection is automatically selected by adding a scale
parameter to the HDN. Many previous object detection algo-
rithms use a single size for image neighborhoods. Typically,
this size and corresponding search step need to chosen a priori
to balance the accuracy of the final detection result and com-
putational speed. According to an advantageous embodiment
of the present invention, this problem can be solved using
hierarchical detection. During detection, larger object context
is considered at coarser image resolutions resulting in robust-
ness against noise, occlusions, and missing data. High detec-
tion accuracy is achieved by focusing the search in a smaller
neighborhood at finer resolutions. Denoting the scale param-
eter as A in the HDN;, the scale parameter A is treated as an
extra parameter to 0 , and the order selection described in step
404 is used to select A as well. Accordingly, although in FIG.
4, steps 404 and 406 are shown as separate steps, one skilled
in the art will understand that the order selection and scale
selection can be performed simultaneously to generate a
HDN that specifies the order and the scale for the detection of
multiple objects.

In the embodiments described above, the multiple object
detection method sequentially detects the objects in an order
automatically determined in the training of the HDN. Itis also
possible that the detection order be set manually by a user or
semi-automatically by a user manually setting a partial order
and the remaining order being automatically determined.

The above described methodology for multiple object
detection can be applied to detect various anatomical objects
in various different imaging modalities. Various examples of
multiple object detection using the above described method-
ology are described below.

In one example, the multiple object detection method of
FIGS. 1, 3, and 4 is used to detect five atrium landmarks of the
left atrium (LA) in an apical two chamber (A2C) view of an
ultrasound image. FIG. 6 illustrates the five atrium landmarks
of'the LA in an ASC ultrasound image 600. As shown in FIG.
6, the landmarks are numbered as 01, 05, 09, 13, and 17. The
LA appearance is typically noisy since, during imaging, it is
at the far end of the ultrasound probe. In this example, an
expert annotated the five atrium landmarks in 417 training
images. The size of the images is 120x120 pixels on average.

In an experiment to test different sampling strategies, three
location detectors were trained independently using 281
training images. The detection order for this experiment was
fixed as: 09—01—05 (see FIG. 6 for landmark numbering).
Two different sampling strategies for object detection were
tested within 136 unseen images. In the first sampling strat-
egy (mean sampling), N number of samples are obtained with
the strongest weight. In the second strategy (k-means sam-
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pling), up to M=2000 samples are obtained with the strongest
weight and k-means clustering is performed to get N number
of modes. After each landmark detection, these N samples are
propagated to the next stage. The detected location is obtained
by averaging the N samples for each landmark.

The number samples N was varied between 1 and 50. For
each setting, the detection method was run to obtain the
locations of the three landmarks. The mean of the 95% small-
est errors was calculated by comparing the detected locations
to manually labeled ground truths. FIG. 7 illustrates a graph
comparing the error for the mean sampling strategy 702 and
the k-means sampling strategy 704 over the number of
samples (candidates or modes). As shown in FIG. 7, using the
k-means sampling strategy 704, the errors are lower for all
number of samples, as compared to the mean sampling strat-
egy 702. Accordingly, by focusing the representation on the
modes of the distribution using k-means sampling, a smaller
number of samples can be used and the mean detection error
is smaller.

In another experiment using the atrium landmarks illus-
trated in FIG. 6, the automatic selection of object detection
order, as described above in connection with FIG. 4, was
evaluated. The goal is to automatically determine the detec-
tion order of the five left atrium landmarks (01, 05, 09, 13, and
17) illustrated in FIG. 6. As in the previous experiment, the
landmark detectors are trained using 281 annotated training
images. A total of 46 annotated images from the data set were
used to obtain the detection order. The remaining 90 images
were used for detection and evaluation comparison.

FIG. 8 illustrates the score value plotted for object detec-
tion stage for the automatically selected detection order and
100 random cases. The score values of FIG. 8 were normal-
ized after each step. As shown in FIG. 8, line 802 represents
the score value for the automatically determined detection
order, and the other lines in the graph represent 100 randomly
selected detection orders. As shown in FIG. 8, the automati-
cally selected order 802 has high score values across all
stages. The two randomly selected orders that have higher
score values in the final stage have low score values at earlier
stages. Accordingly, these detection orders were not selected
by the automatic order selection method.

As described above, the greedy order selection method
selects the order with the highest score value at each step.
FIG. 9 illustrates the HDN 900 generated by the automatic
object detection order selection for the atrium landmarks of
FIG. 6. As shown in the HDN 900 of FIG. 9, landmark 05 is
detected first, and is the precursor for detecting landmarks 13
and 09. Landmark 13 is the precursor for detecting landmark
01, and landmark 09 is the precursor for detecting landmark
17.

The automatically selected sequential order (HDN 900) is
further compared to the 100 randomly generated orders by
calculating, for each order, the final detection error averaged
over all testing images and detected landmarks, as well as
calculating the score as the probability of states in the ground
truth region (Equation 15) for the final selection stage nor-
malized by the maximum probability across all stages. FIG.
10 illustrates a plot of the final detection error vs. the score
calculated for the automatically selected object detection
order and the 100 random orders. In FIG. 10, star 1002 rep-
resents the automatically selected order and the circles in the
graph represent the 100 random orders. As shown in FIG. 10,
the automatically selected order 1002 has a low mean error
and a high probability (score), as compared to the 100 random
orders. The order with the highest probability was not
selected due to the greedy automatic selection strategy. This is
because the probability of the states near ground truth was
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low for earlier objects in this detection order. Since in real
detection scenarios, the ground truth is not available and
sampling in low probability regions is not reliable, these
sequential orders are not preferable to the automatically
selected order.

FIG. 11 illustrates detection results for detecting the five
atrium landmarks in exemplary A2C ultrasound images. The
landmarks were detected using the sequential sampling in the
order specified by the automatically selected HDN 900 of
FIG. 9. As illustrated in FIG. 11, image 1100 shows detection
results 1101, 1103, 1105, 1107, and 1109 for landmarks 01,
05, 09, 13, and 17, respectively. Image 1110 shows detection
results 1111, 1113, 1115, 1117, and 1119 for landmarks 01,
05, 09, 13, and 17, respectively. Image 1120 shows detection
results 1121, 1123, 1125, 1127, and 1129 for landmarks 01,
05, 09, 13, and 17, respectively. Image 1130 shows detection
results 1131, 1133, 1135, 1137, and 1139 for landmarks 01,
05, 09, 13, and 17, respectively. The numbers below each of
the images are the landmark detection errors (in pixels) for
landmarks 01, 05, 09, 13, and 17, respectively, for each
image.

In another exemplary implementation, the above described
method for multiple object detection can be implemented to
detect fetal brain structures in 3D ultrasound data. For
example, the cerebellum, the cisterna magna, and the lateral
ventricles can be detected in various planes of a 3D ultra-
sound volume. The output of the system is a visualization of
the plane with the correct orientation and centering, as well as
biometric measurement of the anatomy. In this example, 589
expert-annotated images were used for training and 295 for
testing. The volumes have an average size of 250x200x150
mm. In this example, a HDN was trained that automatically
selects detection order and scale for object detection.

FIG. 12 illustrates an HDN trained for fetal brain structure
detection. As shown in FIG. 12, the HDN 1200 specifies
detection of the cerebellum (CER), the cisterna magna (CM),
and the lateral ventricles (LV), and uses a hierarchy of three
resolutions (4 mm, 2 mm, and 1 mm). In particular, HDN
1200 specifies that the cerebellum is first detected at a reso-
Iution of 4 mm in the transcerebellar plane. The 4 mm cer-
ebellum detection is a precursor for detecting the cerebellum
at 2 mm in the transcerebellar plane. The 2 mm cerebellum
detection is a precursor for detecting the cerebellum at 1 mm
in the transcerebellar plane. The 2 mm cerebellum detection
is also a precursor for detecting the lateral ventricles at 2 mm
in the transventricular plane. The 1 mm cerebellum detection
is a precursor for detecting the cisterna magna at 1 mm in the
transcerebellar plane. The 2 mm lateral ventricles detection is
a precursor for detecting the lateral ventricles at 1 mm in the
transventricular plane. Image 1202 shows an annotation of
the lateral ventricles (LV) in the transventricular plane, and
Image 1204 shows annotations of the cerebellum (CER) and
the cisterna magna (CM) in the transcerebellar plane.

Using the HDN 1200 of FIG. 12, the average detection
error is 2.2 mm, which is lower than the average detection
error 4.8 of a system without the HDN. FIG. 13 illustrates
exemplary detection results for the cerebellum, the cisterna
magna, and the lateral ventricles in a 3D ultrasound using the
HDN 1200 of FIG. 12. As illustrated in FIG. 13, image 1300
shows the detected cerebellum 1302, image 1305 shows the
ground truth cerebellum 1304, and images 1310 and 1315 are
sagittal and coronal cross sections, respectively, showing the
detection plane 1312 used to detect the cerebellum and the
ground truth transcerebellar plane 1314. Image 1320 shows
the detected cisterna magna 1322, image 1325 shows the
ground truth cisterna magna 1324, and images 1330 and 1335
are sagittal and coronal cross sections, respectively, showing
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the detection plane 1332 used to detect the cisterna magna and
the ground truth transcerebellar plane 1334. Image 1340
shows the detected lateral ventricles 1342, image 1345 shows
the ground truth lateral ventricles 1344, and images 1350 and
1355 are sagittal and coronal cross sections, respectively,
showing the detection plane 1352 used to detect the lateral
ventricles and the ground truth transventricular plane 1354.

In another exemplary implementation, the above described
method for multiple object detection can be implemented for
detection of a fetal face in 3D ultrasound volumes. In this
example, a total of 962 images were used in training and 48
testing. The gestational age of the fetus ranged from 21 to 40
weeks. The average size of the volumes is 157x154x104 mm.
The major challenges of fetal face detection in 3D ultrasound
data include varying appearance of structures due to different
developmental stages and changes in the face region caused
by movement of the extremities and the umbilical cord. The
face was annotated by manually specifying mesh points on
the faceregion. A bounding box ofthe mesh specifies the pose
that is automatically detected using the multiple object detec-
tion method.

The HDN trained for the fetal face detection includes three
hierarchical levels of facet detection, at resolutions of 4 mm,
2 mm, and 1 mm. The final training error was 5.48 mm and the
testing error was 10.67 mm. FIG. 14 illustrates exemplary
detection results for fetal face detection in 3D ultrasound
data. As illustrated in FIG. 14, column 1400 shows fetal face
detection results 1402, 1404, and 1406 for a first 3D ultra-
sound volume and column 1410 shows fetal face detection
results 1412, 1414, and 1416 for a second 3D ultrasound
volume. Images 1402 and 1410 show initial poses detected
after loading the respective volumes. Images 1404 and 1414
show the fetal faces automatically detected at a finest resolu-
tion, and images 1406 and 1416 show the automatically
detected fetal faces after volume carving of the region in front
of the face.

In another example described below, the method for mul-
tiple object detection is again used to detect brain structures in
3D ultrasound. In particular, in this example, the cerebellum
and corpus callosum are detected in a 3D ultrasound volume.
In detecting these brain structures, a rigid detectors using
marginal space learning (MSL) are trained for the cerebellum
and the corpus callosum. FIG. 15 illustrates a simple network
that corresponds to the MSL algorithm for estimating the
pose (9-dimensional similarity transform) of an object. This
network is referred to herein as a rigid detector 1500. The
object localization happens in three operations. Given an
inputimage, specified in the experiment parameters 1502, the
initial position estimate for the object is obtained from a
trained position detector 1504. The output of this operation is
the list of most probable position candidates 1506. The posi-
tion candidates 1506, along with orientation hypotheses 1508
are inputto a trained orientation detector 1510, which outputs
most likely position and orientation candidates 1512 (6D
pos.+ort. candidates). The position and orientation candi-
dates 1512, along with scale hypotheses 1514, are input to a
trained scale detector 1516, which outputs a list of most likely
pose parameters (pos.+ort.+scale candidates) 1518.

The output of the cerebellum and corpus callosum detec-
tion is a visualization of the plane with correct orientation and
centering of each structure. The structures are used in
OB/GYN practice to assess fetus health and growth. Cerebel-
lum pose can be determined using a hierarchy of rigid detec-
tors. The detection hypotheses from a lower resolution image
are propagated to the higher resolution image in both training
and detection. The next detector is constrained to only search
a region of interest defined by the union of neighborhood
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regions surrounding candidates with the highest probability.
The structure at different resolutions is therefore treated as
another object and the sampling of probability distributions
for calculating the prediction and update steps follows Equa-
tions (1) and (2). This way, the search space at each resolution
level is decreased, which results in higher efficiency and
robustness.

FIG. 16 illustrates two possible hierarchical detection net-
works 1610 and 1640 for cerebellum detection. Both net-
works 1610 and 1640 utilize a hierarchy of detectors using an
input image volume 1600 at resolutions of 4 mm (1602), 2
mm (1604), and 1 mm (1606). In pipeline A (network 1610),
experiment parameters from the 4 mm volume 1602 are input
to a 4 mm position detector 1612, which outputs 4 mm posi-
tion candidates 1614. The 4 mm position candidates 1614 are
input to a 2 mm position detector 1616 to constrain a search
range of the 2 mm position detector 1616. Experiment param-
eters from the 2 mm volume 1604 are input to the 2 mm
position detector 1616, which outputs 2 mm position candi-
dates 1618. The 2 mm position candidates 1618, along with
the experiment parameters from the 2 mm volume 1604, are
input to a 2 mm orientation detector 1620, which outputs 2
mm position and orientation candidates 1622. The 2 mm
position and orientation candidates 1622, along with experi-
ment parameters from the 1 mm volume 1606, are input into
a 1 mm rigid detector 1624, which outputs 1 mm pose (pos.+
ort.+scale) candidates 1626. The 1 mm pose candidates 1626
are input to a robust mean aggregator 1628 that combines the
pose candidates 1626 weighted by their probabilities to deter-
mine the final 9D similarity transform (object pose) 1630.

Inpipeline B (network 1640), experiment parameters from
the 4 mm volume 1602 are input to a 4 mm rigid detector
1642, which outputs 4 mm pose (pos.+ort.+scale) candidates
1644. The 4 mm pose candidates 1644, along with experiment
parameters from the 2 mm volume 1604, are input to a 2 mm
rigid detector 1646, which outputs 2 mm pose (pos.+ort.+
scale) candidates 1648. The 2 mm pose candidates 1648,
along with the experiment parameters from the 1 mm volume
1606, are input into a 1 mm rigid detector 1650, which outputs
1 mm pose (pos.+ort.+scale) candidates 1652. The 1 mm pose
candidates 1652 are input to a robust mean aggregator 1654
that combines the pose candidates 1652 weighted by their
probabilities to determine the final 9D similarity transform
(object pose) 1656.

Once the cerebellum is detected (e.g., using pipeline A or
pipeline B), the candidates with the highest probability are
used to predict the pose parameters of the corpus callosum.
This sampling and prediction is performed following Equa-
tion (1) and using the prediction kernel from Equation (10).
The prediction kernel is Gaussian, and is implemented in a
mean box predictor module. Using candidates with the high-
est probability, the corpus callosum detection continues using
a rigid detector. FIG. 17 illustrates two possible corpus cal-
losum detection pipelines (C and D). As illustrated in FIG. 17,
bothpipeline C and pipeline D start with a 2 mm rigid detector
1702. In pipeline C, candidate detections from the cerebellum
at 2 mm are used by a 2 mm corpus callosum mean box
predictor 1704 to predict pose parameters for the corpus
callosum at 2 mm, which are input to a2 mm corpus callosum
rigid detector 1706. The 2 mm corpus callosum rigid detector
1706 detects the pose of the corpus callosum at 2 mm. In
pipeline D, candidate detections from the cerebellum at 2 mm
are inputto a 1 mm cerebellum rigid detector 1708. The 1 mm
cerebellum candidates are used by a 1 mm mean box predictor
1710 to predict pose parameters for the corpus callosum at 1
mm, which are inputto a 1 mm corpus callosum rigid detector
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1712. The 1 mm corpus callosum rigid detector 1712 detects
the pose of the corpus callosum at 1 mm.

The cerebellum detection networks in pipelines A and B of
FIG. 16 were trained using 990 expert-annotated volumes.
The volumes were annotated by marking a measurement line
in the cerebellum plane (see FIG. 19). The cerebellum mea-
surement is used in OB/GYN practice to assess fetus health
and growth. The corpus callosum detection modules in pipe-
lines C and D of FIG. 17 were trained using 636 volumes.
Since these experiments were not concerned with the corpus
callosum measurement, the annotation line was drawn from
the bottom of the genu inside the body of the corpus callosum,
as shown in FIG. 19. The annotation planes and lines define
the pose of each structure. A total of 107 volumes were used
for testing. The volumes have an average size of 250x200x
150 mm. The separation of the volumes into training and
testing data sets was random, and the two datasets are disjoint.

Quantitative evaluation of the automatic cerebellum detec-
tion and measurement is in Table 1 below. As shown in Table
1, the median measurement error of pipeline A is 3.09 mm and
the median measurement error of pipeline B is 3.38 mm.
Accordingly, pipeline A provides more accurate measure-
ments than pipeline B, despite the fact that the network for
pipeline A is simpler (it uses only a position detector at 4 mm
resolution and position and orientation detectors at 2 mm, as
opposed to rigid detectors as in pipeline B). This is caused by
an insufficient amount of detail at the 4 mm resolution to
disambiguate the orientation of the fetus skull. FIG. 18 illus-
trates cerebellum annotations at 4 mm, 2 mm, and 1 mm,
resolutions. As shown in FIG. 18, image 1800 shows a cer-
ebellum annotation line 1802 at 4 mm, image 1810 shows a
cerebellum annotation line 1812 at 2 mm, and image 1820
shows a cerebellum annotation line 1822 at 1 mm. As shown
in FIG. 18, the coarse 4 mm resolution volume 1800 has
insufficient details causing ambiguity of the fetus skull ori-
entation. The annotation line highlights the cerebellum,
which is difficult to distinguish at 4 mm, but is much more
clear at 2 mm and 1 mm resolutions.

TABLE 1
Median Med. Std. Max.
Pipeline A 3.09 1.71 7.45
Pipeline B 3.38 1.78 6.44

Quantitative evaluation of the automatic corpus callosum
detection is in Table 2 below. The median measurement error
of pipeline C is 4.83 mm and the median measurement error
of pipeline D is 4.20 mm, respectively. The results at 1 mm
resolution (pipeline D) are more accurate thanks to the more
reliable cerebellum candidates at this resolution.

TABLE 2
Median Med. Std. Max.
Pipeline C (2 mm) 4.83 2.38 8.68
Pipeline D (1 mm) 4.20 2.13 9.91

FIG. 19 illustrates detection results for the cerebellum and
the corpus callosum in a 3D ultrasound volume using pipe-
lines A and D, respectively. As illustrated in FIG. 19, image
1900 shows the detected cerebellum 1902, image 1905 shows
the ground truth cerebellum 1904, and images 1910 and 1915
are sagittal and coronal cross sections, respectively, showing
the detected detection plane 1912 for the cerebellum and the
ground truth detection plane 1914 for the cerebellum. Image
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1920 shows the detected corpus callosum 1922, image 1925
shows the ground truth corpus callosum 1924, and images
1930 and 1935 are sagittal and coronal cross sections, respec-
tively, showing the detected detection plane 1932 for the
corpus callosum and the ground truth detection plane 1934
for the corpus callosum.

According to another embodiment, the above described
multiple object detection method can be adapted to detect an
object boundary in addition to the object pose. In one
example, a liver boundary can be detected in a 3D MRI
volume. Boundary detection occurs similarly to the hierar-
chical detection network, and first proceeds by detecting a
shape in a learnt sub-space. Given a mean shape, P={p,e
R3},._,", and few modes (e.g., 3) of shape variation,
U~{u/},_," (obtained by procrustus analysis of training
data), a new shape in the subspace can be synthesized as a
linear combination of the modes:

pi(dj, r, 5,0 =T(r, s, t)(ﬁ‘- + Z/Iju{], (15)
J

where T(r, s, t) is a similarity matrix defined by rotation r,
scale s, and translation t. The parameters in the shape space,
0,4~ 1M, As, A3}, are estimated in the same way as an HDN
using a discriminative classifier (Equation 12), and the trans-
formation (r, s, t) comes directly from estimating the pose of
the desired structure, or through a prediction phase.

The second step of a free-form refinement of the mesh. In
this phase, the mesh vertices themselves are the parameters 0
to be estimated. The update p,<—p,+a,n, is calculated in the
direction of the normal n,. Again, ¢, is obtained through the
use of a trained discriminative model:

(16)

where T is the search range along the normal. This update is
interleaved with surface smoothing and updating the normal
n,. In practice, the mesh refinement is done on a three level
mesh hierarchy, where P, P, =P, with the coarser levels
being detected first.

The boundary detection algorithm naturally maps to con-
cepts in an integrated detection network. A PCA detector
takes as ins input a shape subspace and a single similarity
transform (e.g., calculated by aggregating a set of candi-
dates), which it augments with the detected PCA coefficients
h;. A mesh synthesizer uses these candidates along with the
shape subspace to generate an output mesh. Finally, a bound-
ary detector accepts an input mesh and outputs the refined
mesh. Internally, the boundary detector optionally upsamples
the input mesh before performing detection.

FIG. 20 illustrates a boundary detection (or segmentation)
network for detecting a liver boundary in a 3D MRI volume.
As shown in FIG. 20, rigid detection is used to initialize the
boundary detection hierarchy, which is performed first on 3
mm data, then on 1 mm data. The mean liver mesh and shape
subspace are built by performing procrustes analysis on
manually annotated training examples. The mesh hierarchy
includes a low resolution mesh with 602 vertices, a middle
resolution with 1202 vertices, and the finest resolution at
2402 vertices. The low and middle resolution boundary detec-
tors are trained on 3 mm data, whereas the high resolution is
detected on 1 mm resolution volumes.

The pipeline illustrated in FIG. 20 was trained on 59 anno-
tated input volumes with dimensions as large as 420x300x
432 mm. Using 3-fold cross-validation, we compared the
mesh-to-mesh distance of the detected results. Through an

a~argmin_._. . f,=+11V, . p+on,,),
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integrated detection network, it is possible to reconfigure the
detection pipeline to remove the middle parts of the algo-
rithm. Table 3, below, illustrates the accuracy after running
several variations of the pipeline. As suggested by Table 3, the
intermediate detection phases are necessary not only for per-
formance, but also for accuracy. FIG. 21 illustrates exemplary
liver boundary detection results in MRI slices. As shown in
FIG. 21, images 2100, 2110, 2120, 2130, 2140, and 2150
show liver boundary detection results 2101, 2112, 2122,
2132, 2142, and 2152, respectively.

TABLE 3
Method Mean Mean Std. Median
Entire Pipeline 2.53 1.82 1.81
No 3 mm (med res.) 3.72 2.17 3.28
No (PCA or middle mesh) 5.26 2.38 4.79

The above-described methods for multiple object detection
may be implemented on a computer using well-known com-
puter processors, memory units, storage devices, computer
software, and other components. A high-level block diagram
of such a computer is illustrated in FIG. 22. Computer 2202
contains a processor 2204, which controls the overall opera-
tion of the computer 2202 by executing computer program
instructions which define such operation. The computer pro-
gram instructions may be stored in a storage device 2212
(e.g., magnetic disk) and loaded into memory 2210 when
execution of the computer program instructions is desired.
Thus, the steps of the method of FIGS. 1, 3, and 4 may be
defined by the computer program instructions stored in the
memory 2210 and/or storage 2212 and controlled by the
processor 2204 executing the computer program instructions.
An image acquisition device 2220 can be connected to the
computer 2202 to input image data to the computer 2202. It is
possible to implement the image acquisition device 2220 and
the computer 2202 as one device. It is also possible that the
image acquisition device 2220 and the computer 2202 com-
municate wirelessly through a network. The computer 2202
also includes one or more network interfaces 2206 for com-
municating with other devices via a network. The computer
2202 also includes other input/output devices 2208 that
enable user interaction with the computer 2202 (e.g., display,
keyboard, mouse, speakers, buttons, etc.). Such input/output
devices 2208 may be used in conjunction with a set of com-
puter programs as an annotation tool to annotate volumes
received from the image acquisition device 2220. One skilled
in the art will recognize that an implementation of an actual
computer could contain other components as well, and that
FIG. 22 is a high level representation of some of the compo-
nents of such a computer for illustrative purposes.

The foregoing Detailed Description is to be understood as
being in every respect illustrative and exemplary, but not
restrictive, and the scope of the invention disclosed herein is
notto be determined from the Detailed Description, but rather
from the claims as interpreted according to the full breadth
permitted by the patent laws. It is to be understood that the
embodiments shown and described herein are only illustra-
tive of the principles of the present invention and that various
modifications may be implemented by those skilled in the art
without departing from the scope and spirit of the invention.
Those skilled in the art could implement various other feature
combinations without departing from the scope and spirit of
the invention.
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The invention claimed is:

1. A method for detecting multiple objects in an image,
comprising:

sequentially detecting a plurality of objects in an image in

an order specified by a trained hierarchical detection

network, wherein the detection of each object in the

image comprises:

obtaining a plurality of sample poses for the object from
a proposal distribution of object poses for the object,

weighting each of the plurality of sample poses based on
an importance ratio calculated for each sample pose,
and

estimating a posterior distribution for the object based
on the weighted sample poses.

2. The method of claim 1, wherein the step of obtaining a
plurality of sample poses for the object from a proposal dis-
tribution of object poses for the object comprises:

determining the proposal distribution for the object based

on one or more detected poses for a previously detected
one of the plurality of objects.

3. The method of claim 2, wherein the step of determining
the proposal distribution for the based one or more detected
poses for a previously detected one of the plurality of objects
comprises:

applying a Gaussian distribution transition kernel to each

of the one or more detected poses of the previously
detected one of the plurality of objects, wherein the
Gaussian distribution transition kernel is estimated
based on training data.

4. The method of claim 1, wherein the step of obtaining a
plurality of sample poses for the object from a proposal dis-
tribution of object poses for the object comprises:

obtaining the plurality of sample poses using k-means sam-

pling.

5. The method of claim 1, wherein the step of weighting
each of the plurality of sample poses based on an importance
ratio calculated for each sample comprises:

weighting each of the plurality of sample poses based on an

importance ratio calculated for each sample pose using a
probability determined for each sample pose by atrained
object detector.

6. The method of claim 1, wherein the step of estimating a
posterior distribution for the object based on the weighted
sample poses comprises:

estimating a posterior distribution for the object and all

previously detected ones of the plurality of objects based
on the weighted sample poses.

7. The method of claim 6, wherein the step of estimating a
posterior distribution for the object and all previously
detected ones of the plurality of objects based on the weighted
sample poses comprises:

resampling the weighted sample poses using the impor-

tance ratios the weighted sample poses to calculate an
unweighted approximation of the posterior distribution
for the object and all previously detected ones of the
plurality of objects.

8. The method of claim 1, wherein the step of estimating a
posterior distribution for the object based on the weighted
sample poses comprises:

averaging a certain number of highest weighted sample

poses.

9. The method of claim 1, wherein the trained hierarchical
detection network specifies a hierarchy of scales for detecting
the plurality of objects.

10. The method of claim 1, wherein the step of sequentially
detecting a plurality of objects in an image in an order speci-
fied by a trained hierarchical detection network comprises:
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sequentially detecting the plurality of objects in the image
in an order specified by the trained hierarchical detection
network using Monte Carlo sampling.

11. The method of claim 1, wherein the order for detecting
the plurality of objects is one of set automatically in training
of'the hierarchical detection network, set manually by a user,
and set semi-automatically where a partial order is set manu-
ally by a user and the remaining order is set automatically in
training of the hierarchical detection network.

12. A method of training a hierarchical detection network
for detecting a plurality of objects in an image, comprising:

individually training a plurality of object detectors, each

corresponding to one of the plurality of objects, using a
first set of annotated training data; and

automatically determining a detection order for detecting

the plurality of objects using a second set of annotated
training data and the trained plurality of object detectors.

13. The method of claim 12, wherein the step of automati-
cally determining a detection order for detecting the plurality
of'objects using a second set of annotated training data and the
trained plurality of object detectors comprises:

selecting a first one of the trained plurality of object detec-

tors to add to a hierarchical detection network, the first
one of the trained plurality of object detectors having a
highest score for detecting the corresponding one of the
plurality of objects in the second set of annotated train-
ing data;

recursively adding a next one of the trained plurality of

detectors to connect to a precursor in the hierarchical
detection network, by selecting the next one of the
trained plurality of detectors and the precursor to maxi-
mize an expected value of a score for detecting the
corresponding objects in the second set of annotated
training data.

14. The method of claim 12, wherein the step of automati-
cally determining a detection order for detecting the plurality
of'objects using a second set of annotated training data and the
trained plurality of object detectors comprises:

automatically determining a detection order and a scale

hierarchy for detecting the plurality of objects.

15. An apparatus for detecting multiple objects in an
image, comprising:

means for sequentially detecting a plurality of objects in an

image in an order specified by a trained hierarchical

detection network, wherein the means for sequentially

detection comprises:

means for obtaining a plurality of sample poses for an
object from a proposal distribution of object poses for
the object,

means for weighting each of the plurality of sample
poses based on an importance ratio calculated for
each sample pose, and

means for estimating a posterior distribution for the
object based on the weighted sample poses.

16. The apparatus of claim 15, wherein the means for
obtaining a plurality of sample poses for the object from a
proposal distribution of object poses for the object comprises:

means for determining the proposal distribution for the

object based on one or more detected poses for a previ-
ously detected one of the plurality of objects.

17. The apparatus of claim 16, wherein the means for
determining the proposal distribution for the based one or
more detected poses for a previously detected one of the
plurality of objects comprises:

means for applying a Gaussian distribution transition ker-

nel to each of the one or more detected poses of the
previously detected one of the plurality of objects,
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wherein the Gaussian distribution transition kernel is
estimated based on training data.

18. The apparatus of claim 15, wherein the means for
weighting each of the plurality of sample poses based on an
importance ratio calculated for each sample comprises:

means for weighting each of the plurality of sample poses

based on an importance ratio calculated for each sample
pose using a probability determined for each sample
pose by a trained object detector.

19. The apparatus of claim 15, wherein the means for
estimating a posterior distribution for the object based on the
weighted sample poses comprises:

means for estimating a posterior distribution for the object

and all previously detected ones of the plurality of
objects based on the weighted sample poses.
20. The apparatus of claim 19, wherein the means for
estimating a posterior distribution for the object and all pre-
viously detected ones of the plurality of objects based on the
weighted sample poses comprises:
means for resampling the weighted sample poses using the
importance ratios the weighted sample poses to calcu-
late an unweighted approximation of the posterior dis-
tribution for the object and all previously detected ones
of the plurality of objects.
21. The apparatus of claim 15, wherein the trained hierar-
chical detection network specifies a hierarchy of scales for
detecting the plurality of objects.
22. An apparatus for training a hierarchical detection net-
work for detecting a plurality of objects in an image, com-
prising:
means for individually training a plurality of object detec-
tors, each corresponding to one of the plurality of
objects, using a first set of annotated training data; and

means for automatically determining a detection order for
detecting the plurality of objects using a second set of
annotated training data and the trained plurality of object
detectors.

23. The apparatus of claim 22, wherein the means for
automatically determining a detection order for detecting the
plurality of objects using a second set of annotated training
data and the trained plurality of object detectors comprises:

means for selecting a first one of the trained plurality of

object detectors to add to a hierarchical detection net-
work, the first one of the trained plurality of object
detectors having a highest score for detecting the corre-
sponding one of the plurality of objects in the second set
of annotated training data;

means for recursively adding a next one of the trained

plurality of detectors to connect to a precursor in the
hierarchical detection network, by selecting the next one
of the trained plurality of detectors and the precursor to
maximize an expected value of a score for detecting the
corresponding objects in the second set of annotated
training data.

24. The apparatus of claim 22, wherein the means for
automatically determining a detection order for detecting the
plurality of objects using a second set of annotated training
data and the trained plurality of object detectors comprises:

means for automatically determining a detection order and

a scale hierarchy for detecting the plurality of objects.

25. A non-transitory computer readable medium encoded
with computer executable instructions for detecting multiple
objects in an image, the computer executable instructions
defining steps comprising:
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sequentially detecting a plurality of objects in an image in

an order specified by a trained hierarchical detection

network, wherein the detection of each object in the

image comprises:

obtaining a plurality of sample poses for the object from
a proposal distribution of object poses for the object,

weighting each of the plurality of sample poses based on
an importance ratio calculated for each sample pose,
and

estimating a posterior distribution for the object based
on the weighted sample poses.

26. The computer readable medium of claim 25, wherein
the computer executable instructions defining the step of
obtaining a plurality of sample poses for the object from a
proposal distribution of object poses for the object comprise
computer executable instructions defining the step of:

determining the proposal distribution for the object based

on one or more detected poses for a previously detected
one of the plurality of objects.

27. The computer readable medium of claim 26, wherein
the computer executable instructions defining the step of
determining the proposal distribution for the based one or
more detected poses for a previously detected one of the
plurality of objects comprise computer executable instruc-
tions defining the step of:

applying a Gaussian distribution transition kernel to each

of the one or more detected poses of the previously
detected one of the plurality of objects, wherein the
Gaussian distribution transition kernel is estimated
based on training data.

28. The computer readable medium of claim 25, wherein
the computer executable instructions defining the step of
weighting each of the plurality of sample poses based on an
importance ratio calculated for each sample comprise com-
puter executable instructions defining the step of:

weighting each of'the plurality of sample poses based on an

importance ratio calculated for each sample pose using a
probability determined for each sample pose by atrained
object detector.

29. The computer readable medium of claim 25, wherein
the computer executable instructions defining the step of esti-
mating a posterior distribution for the object based on the
weighted sample poses comprise computer executable
instructions defining the step of:

estimating a posterior distribution for the object and all

previously detected ones of the plurality of objects based
on the weighted sample poses.

30. The computer readable medium of claim 29, wherein
the computer executable instructions defining the step of esti-
mating a posterior distribution for the object and all previ-

20

25

30

35

40

45

20

ously detected ones of the plurality of objects based on the
weighted sample poses comprise computer executable
instructions defining the step of:

resampling the weighted sample poses using the impor-

tance ratios the weighted sample poses to calculate an
unweighted approximation of the posterior distribution
for the object and all previously detected ones of the
plurality of objects.

31. The computer readable medium of claim 25, wherein
the trained hierarchical detection network specifies a hierar-
chy of scales for detecting the plurality of objects.

32. A non-transitory computer readable medium encoded
with computer executable instructions for training a hierar-
chical detection network for detecting a plurality of objects in
an image, the computer executable instructions defining steps
comprising:

individually training a plurality of object detectors, each

corresponding to one of the plurality of objects, using a
first set of annotated training data; and

automatically determining a detection order for detecting

the plurality of objects using a second set of annotated
training data and the trained plurality of object detectors.

33. The computer readable medium of claim 32, wherein
the computer executable instructions defining the step of
automatically determining a detection order for detecting the
plurality of objects using a second set of annotated training
data and the trained plurality of object detectors comprise
computer executable instructions defining the steps of:

selecting a first one of the trained plurality of object detec-

tors to add to a hierarchical detection network, the first
one of the trained plurality of object detectors having a
highest score for detecting the corresponding one of the
plurality of objects in the second set of annotated train-
ing data;

recursively adding a next one of the trained plurality of

detectors to connect to a precursor in the hierarchical
detection network, by selecting the next one of the
trained plurality of detectors and the precursor to maxi-
mize an expected value of a score for detecting the
corresponding objects in the second set of annotated
training data.

34. The computer readable medium of claim 32, wherein
the computer executable instructions defining the step of
automatically determining a detection order for detecting the
plurality of objects using a second set of annotated training
data and the trained plurality of object detectors comprise
computer executable instructions defining the step of:

automatically determining a detection order and a scale

hierarchy for detecting the plurality of objects.
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