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Summary

Background: In the concept of cloud-com-
puting-based systems, wvarious authorized
users have secure access to patient records
from a number of care delivery organizations
from any location. This creates a growing
need for remote visualization, advanced
image processing, state-of-the-art image
analysis, and computer aided diagnosis.
Objectives: This paper proposes a system of
algorithms for automatic detection of ana-
tomical landmarks in 3D volumes in the cloud
computing environment, The system address-
es the inherent problem of limited bandwidth
between a (thin) client, data center, and data
analysis server.

Methods: The problem of limited bandwidth
is solved by a hierarchical sequential de-
tection algorithm that obtains data by pro-
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1. Introduction

In the recently emerging concept of cloud-
computing-based systems, various author-
ized users have secure access to patient
records from a number of care delivery or-
ganizations such as hospitals, urgent care
centers, doctors, laboratories, and imaging
centers from any location [1, 2]. Remote
visualization of data sets in the clinical
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gressively transmitting only image regions
required for processing. The client sends a re-
quest to detect a set of landmarks for region
visualization or further analysis. The algorithm
running on the data analysis server obtains a
coarse level image from the data center and
generates landmark location candidates. The
candidates are then used to obtain image
neighborhood regions at a finer resolution
level for further detection. This way, the land-
mark locations are hierarchically and sequen-
tially detected and refined.

Results: Only image regions surrounding
landmark location candidates need to be
trans- mitted during detection. Furthermore,
the image regions are lossy compressed with
JPEG 2000.Together, these properties amount
to at least 30 times bandwidth reduction
while achieving similar accuracy when com-
pared to an algorithm using the original data.
Conclusions: The hierarchical sequential al-
gorithm with progressive data transmission
considerably reduces bandwidth require-
ments in cloud-based detection systems.
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practice is possible through the integration
based on the Digital Imaging and Com-
munication in Medicine (DICOM) and
Health Level 7 (HL7) standards [3]. This
integration allows for advanced image pro-
cessing, state-of-the-art image analysis, and
computer aided diagnosis distributed over
several systems [4, 5]. This paper takes ad-
vantage of this integration and proposes a
system of algorithms for automatic detec-

tion of anatomical landmarks in 3D vol-
umes in the cloud computing environ-
ment. The system, dubbed Detection in a
Cloud (DiC), is used by thin-client devices
that request a set of anatomical landmarks
from patient data for visualization or
analysis [6]. The patient data stored in a
data center are transmitted to a high per-
formance data analysis server that runs the
detection algorithm. (In the medical do-
main and also in this paper, these servers
are referred to as the Picture Archiving and
Communication System (PACS) and Com-
puter Aided Detection (CAD) servers, re-
spectively). The image with the anatomy
highlighted is returned back to the client
for display and analysis to support diag-
nosis and treatment planning (» Fig. 1)
[7].

Inherent difficulties in designing such a
system are large image sizes (often
hundreds of megabytes) and limited band-
width among thin client, data analysis
server (e.g. CAD server), and data center
(e.g. PACS server). Depending on the band-
width, the transmission of large datasets
can take tens of seconds or even minutes.
Since it is not possible to process the data
on the thin client directly, an obvious sol-
ution is to efficiently transmit the data
from the PACS server to the CAD server for
processing (to support software as a service
(SaaS) model [8]). However, transmitting
databetween PACS and CAD servers is pro-
hibitive already when several detection re-
quests are made simultaneously demand-
ing bandwidths of tens of GBits / second.
This complicates the workflow in inter-
active applications where the results must
be available immediately. Finally, limited
memory and insufficient CPU power of the
client necessitates remote data processing.

We propose a hierarchical sequential de-
tection algorithm to avoid the problem of
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transmitting large datasets. First, the algo-
rithm only processes candidate regions
with high prior probability rather than the
entire images. Second, all image regions are
compressed with a lossy compression. The
lossy compression does not hinder the final
detection accuracy. The hierarchical algo-
rithm is robust and accurate, partly due to
using the compressed images also in train-
ing. We provide an evaluation of training
and detection on images compressed with
lossy 3D JPEG 2000 and analysis of the data
transmission size when detecting multiple
landmarks.

2. Related Work

Locally-hosted servers are typically used in
laboratories for data-intensive tasks, and
for sharing data and applications in collab-
orative research, e.g., in the Biomedical In-
formatics Research Network (BIRN) and
Cancer Biomedical Informatics Grid
(caBIG), both funded by the National Insti-
tutes of Health (NIH) [9]. The recent years
have witnessed large increases in comput-
ing power, data storage capacity and net-
work speed, giving birth to medical appli-
cations which may handle large data vol-
umes of increased complexity, distributed
over the Internet [6]. The paper in [6] de-
scribes an infrastructure to handle queries
into a large distributed database to aid in
mammogram analysis. In [10], large scale
medical image registration is run on a dis-
tributed system to evaluate accuracy of the
final alignment compared to statistically
obtained reference standard. In [11], a sys-
tem for analyzing images of cells from
time-lapse microscopy images is run on a
cloud computing cluster to visualize living
specimen’s dynamic processes. The paper
in [12] presents a cloud-based system for
mobile health care information manage-
ment. In this paper, we present a system for
automatic detection of anatomical land-
marks in CT and MRI volumes in the cloud
computing environment.

Previous discriminative approaches [13,
14] detect objects by testing entire images
exhaustively at all locations. Hierarchical
modeling has focused on exploiting
multiple feature levels of different resol-
utions [15-17] and on part-based [18] or
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Detection in a Cloud {DiC) system. The client sends a request for the detection of an anatomy

for a specific patient. The detection algorithm on the CAD server requests data from the PACS server. The
detection results are efficiently visualized by the client via the JPEG 2000 JPIP protocol.

region-based [19] architectures. In our
multi-resolution hierarchy, the position
candidate hypotheses are propagated dur-
ing training and detection. This results in a
more robust detector than when the levels
are trained independently [20] and can be
extended to multiple landmarks. Multi-ob-
jectdetection in [21] is realized through the
Hierarchical Detection Network (HDN)
which makes it possible to predict candi-
date object poses based on previously de-
tected objects. This approach is suitable for
progressive data transmission, since only
image regions surrounding the candidate
locations are needed for the detection of
additional landmarks. Using only sparse set
of regions is important to keep the trans-
mission data size small.

The JPEG 2000 standard [22] also in-
cludes client/server Interactive Protocol
(JPIP) for transmitting image regions at
desired resolutions using the least band-
width required. The JPIP protocol is useful
for visualizing large Dicom images re-
motely [22] and has a potential to be used
in image analysis applications. The quality
of JPEG 2000 images after lossy compres-
sion have been previously evaluated for
reading radiology datasets [23]. In this
paper, we evaluate the robustness of a
learning-based algorithm using com-
pressed images in training and detection.

Operating under bounded bandwidth
and computational power has been pre-

viously addressed in visual surveillance ap-
plications [24, 25]. The extracted informa-
tion (regions [24] and detected objects
[25]) has much smaller size than the orig-
inal images and can be transmitted effi-
ciently over a wide-area network.

3. Methods

The core of the DiC system (P Fig, 2) is a
hierarchical sequential learning algorithm
(Section 3.2) with a sequence of detectors
trained for different resolutions and land-
marks. The search range of a detector is de-
termined based on the prior probability of
the landmark location estimated using the
previous detector. The image regions corre-
sponding to the search range are progress-
ively obtained over the network from the
PACS server. Since they are encoded with a
JPEG 2000 image compression, only high
frequency wavelet components need to be
transmitted at each subsequent level.

3.1 Hierarchical Multiple Land-
mark Detection

In our multiple landmark detection algo-
rithm, we adopt Hierarchical Detection
Network (HDN) that estimates unknown
landmark states (e.g., landmark locations)
as a sequential decision process [21]. The
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Fig. 2 Overall DiC system diagram. The hierarchical detection algorithm progressively obtains image regions required for detection at each level and for

every landmark.

formulation is similar to Markov chain ap-
proaches to object tracking, but instead of a
temporal motion model with temporal ob-
servations, there is a spatial dependence (or
prior relationship) between landmarks. For
each landmark ¢, the input to the algorithm
is a set of observations obtained from the
image neighborhood V,. The neighbor-
hood V,(r, g, R) is specified by the co-
ordinates of a bounding box with size R
within a d-dimensional image V, V:R* —
[0,1] of resolution r and quality q (such as
measured by peak signal-to-noise ratio,
PSNR). The quality g is lower for images
with artifacts caused by image compres-
sion. The pSNR value is determined with
respect to the uncompressed image, which
has the highest quality q. Each landmark is
represented by its position 8, = (p,, p,, p.).
Let’s denote the sequence of multiple land-
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mark detections as 6., = {6, 0,, ..., 8,}.
The sequence of observations (features) is
denoted as V., = {V,, V|, ..., V,}. The
multi-landmark  detection problem is
solved by recursively applying prediction
and update steps to obtain the posterior
distribution f(6,.,|V;.;). The prediction
step computes the probability density of
the state of the landmark t using the states
of the previous landmarks, up to ¢ — 1, and
previous observations of all landmarks up
tot—1.

The prediction approximates the detec-
tion up to landmark ¢ using the transition
probability, (8 ,16,.,_ ), and the posterior
up to landmark ¢t — 1:

fB. Vo) =

1
£(8,180. 0 (B os1 -1 [Vorr ) 1)

The update then fuses the results with the
new observation region, V,:

f("'!;lg r)f(et}:i |VU: !)
f(BD:J' |V0:r) -
f(vxlv[): t— 1)
The likelihood (observation model),

(V|0 ,),is empirically modeled by training
a discriminative model. The transition
prior f(6,6,., ) approximates the se-
quential dependence of landmark t. These
terms are further defined in the next sec-
tion.

During training, the landmark position
candidate hypotheses are propagated from
the coarser levels to the finer levels using
the above steps as follows. At the coarsest
resolution ry, a classifier D(r, q,) is trained
using the volume region V(ry, g, Ry). The
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Fig. 3 Schematic diagram showing the robustness of the hierarchical processing (1). Prediction step of the sequential sampling and the schematic diagram
of the probability distribution (2). Bandwidth savings achieved by the hierarchical processing and bootstrapping feedback (3). The search regions in the can-
didate propagation are shown with red rectangles (4). Only three resolution levels and two landmarks are shown to demonstrate the concept.

size R, of the region is the size of the whole
image at resolution . The detector is then
used to obtain position candidate hypo-
theses at this level. The candidates with the
highest probability are bootstrapped to
train a detector D(r), q,) at the next level
with resolution r,. The volume region
Vir, q;» R,) is composed of the union of
neighborhood regions of size R, surround-
ing the position candidates. The bootstrap-
ping procedure continues until all levels {r;}
have been processed. When training detec-
tors for multiple landmarks, the candidates
are propagated between landmarks in a
similar way. As a result, hierarchical detec-
tion and multiple landmark detection is
formulated in a unified way.

The hierarchical processing has several
advantages. First, the decreasing context re-
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gion size helps to avoid local maxima of the
probability distribution that would other-
wise cause false positives. This results in a
more robust and efficient algorithm that
operates on datasets of reduced size. Sec-
ond, the search step depends on the
resolution at each level and does not need
to be chosen to balance the accuracy of the
final result and computational speed.

3.2 The Observation and Transi-
tion Models for Adaptive Learning

Let us now define a random variable y
{1, +1}, where y = +1 indicates the pres-
ence and y = —1 absence of the landmark.
We train a Probabilistic Boosting Tree clas-
sifier (PBT) [13] with nodes composed of

AdaBoost classifiers trained to select fea-
tures that best discriminate between posi-
tive and negative examples of the land-
mark. We can then formulate the posterior
distribution of a landmark presence as
fly,=+1]0 , V,). Therefore, the observation
model (Section 3.1) has the form
F(VI8) = fly,= +116, V). (3)
The best transition kernel might stem from
any previously detected landmark, depend-
ing on the anatomical context. In this
paper, we use a pairwise dependency

f(6:16y.. 1) = £(6,16)),

je (0,1, t— 1} 4)
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Fig. 4 Sorted detection error for different levels of compression in testing when trained on uncompressed (left) and compressed (right) images. By using
compressed images in training, the classifier is more robust to the compression artifacts during detection.
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Fig. 5 Detection error vs. average volume size for hip bone landmark in CT (left) and crista galli landmark in brain MRI (right). The images were compressed
in training and testing with the same pSNR level (adaptive) and uncompressed in training and compressed in testing (nonadaptive). The hierarchical process-
ing results in lowest detection error through the focused coarse-to-fine search and training on compressed volumes. The average size of the uncompressed

and lossless-compressed volumes is: 404 kB and 189 kB (8 mm CT), 3334 kB and 985 kB (2 mm MRI).

We model f(8,]6,., ) as a Gaussian dis-
tribution estimated from the training data.
When applying a classifier trained using
uncompressed data to detect landmarks in
a lossy- compressed data, the compression
artifacts decrease the detection accuracy.
This is especially true when high compres-
sion rate of 3D JPEG 2000 introduces
strong artifacts. To improve the detection
accuracy, we make the detector adapted to
the compression artifacts by training the

Methods Inf Med 3/2012

classifier on the compressed data instead of
the uncompressed data. In the learning
procedure, AdaBoost automatically dis-
cards image features sensitive to compres-
sion artifacts and selects robust features
that are consistent around anatomical
structures overall. In this paper, we do not
study the impact of the compression on the
diagnostic reading and refer reader to [23].
The performance of the adaptive learning
is analyzed in Section 4.

3.3 Progressive Data Transmission

The hierarchical detection algorithm
allows for enormous bandwidth savings
between the CAD and PACS servers. First,
since the images are encoded with a lossy
3D JPEG 2000 compression, only high fre-
quency wavelet components are trans-
mitted at the higher resolution levels. The
robustness of the system is not sacrificed
thanks to adaptive discriminative learning

© Schattauer 2012
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Fig. 6 Average compressed volume sizes (in kBs) at different compression levels and resolutions. The first row also shows sizes after lossless compression
(in parentheses). These statistics are computed over all testing volumes.

which focuses on consistent anatomical
structures and ignores compression arti-
facts (Section 3.2). Second, when we incor-
porate the bootstrapping of the candidates
across levels and multiple landmarks,
image at the coarsest resolution ry is trans-
mitted in its entirety and only image re-
gions surrounding the candidates with the
highest probability f(68y.,|Vy.._ ), of the
prediction step are used at subsequent
levels (Section 3.1). See »Figure 3 for an
overview of the savings achieved by hier-
archical detection and progressive data
transmission.
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The DiC system must compromise be-
tween data bandwidth and the detection
accuracy. Denoting g,image quality used at
the level [ with resolution ry, the total size of
all image regions for transmission is

Smmf: S( V(rf]) qo» Rn}) +8( V(ﬁ, qi Rl}) (5)
+ o+ S(V(r, gas R)),

where # is the total number of levels used.
An algorithm only using the finest resol-
ution r, without the bootstrap feedback
would require size S(V(r,, g,)). The final
detection score Py, € [0, 1] is computed
from the scores at each level

Paverah': (6)
P(D(?’o, QQ))(P(D(H: EII}} LR P(D(rH’ qw))-

Using these definitions, we can now formu-
late the following optimization problems
to determine the quality used at each resol-
ution level. First, given a fixed-size budget
S’, the goal is to maximize the detection
performance by choosing different quality
values (qq, ..., q,) for different resolutions:

(o> +++» qn) = argmax P .n (7
ss§’

Second, given a required detection per-
formance P’, the goal is to minimize the
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Example images with
ground truth lo-
cations (red boxes)
and detection results
(cyan boxes). The CT
images correspond
to the right hip bone
landmark.

total size of all image regions by choosing

different quality values (g, ..., g,,) for dif-
ferent resolutions:
{QU‘ teay q:;) = argmil? Srom} (8)

P

Solutions to these problems are compli-
cated by the fact that the choice of the
quality at the level not only directly in-
fluences the detection score D(r;, q;) , but
also the detection score D(r; , |, q;, ) and
the selection of g; , ; at the next level, I + 1.

izF
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Fig. 8

The diagram of the
Hierarchical Detec-
tion Network for five
brain landmarks:
crista galli (CG), oc-
cipital bone (OB), the
anterior of the cor-
pus callosum (ACC),
the posterior of the
corpus callosum
(PCC), and the brain
stem (STEM).

F'_C_(_: 2 mm

In this paper, we adopt a simpler approach
by setting the quality to the same pSNR
value at each resolution. We study the effect
of this selection on the average detection
error and on the total size S, of all image
regions for transmission.

4. Results

Our experiments start by showing the ad-
vantage of training on lossy and losslesly

compressed images. We will then show that
hierarchical learning improves the robust-
ness of the algorithm and loosens the band-
width requirements. After this, we will
present experiments comparing the full de-
tection pipeline evaluating the hierarchical
learning on compressed and uncompressed
images. Finally, we will evaluate the band-
width requirements in multiple landmark
detection.

4.1 Data Sets

Our experiments are on two datasets. The
first dataset has 247 CT volumes (161 for
training and 86 for testing) with average
size 97 x 80 x 165 voxels after resampling to
4 mm isotropic resolution. The landmark
of interest is the right hip bone landmark
(> Fig. 7). The second dataset has 511 MRI
volumes (384 for training and 127 for
testing) with average size 130 x 130 x 101
voxels after resampling to 2 mm isotropic
resolution. In each volume, we detect the
crista galli (CG) landmark of the brain
(»Fig. 11). In the multi-landmark detec-
tion experiment, we also detect the tip of
the occipital bone (OB), the anterior of the
corpus callosum (ACC), the posterior of
the corpus callosum (PCC), and a land-
mark in the brain stem (STEM). The train-
ing and testing datasets are disjoint and the
volumes in each were chosen randomly.

4.2 Progressive Data Transmission
in Hierarchical Detection

In the first experiment, we test the detec-
tion on images compressed at different
PSNR levels; see B-Figure 6 for examples.
The detection error statistics were com-
puted for images of different pSNR levels
with classifiers trained on a) images with
the same pSNR level, and b) uncompressed
images.

Our second experiment demonstrates
the robustness of the hierarchical detec-
tion. A single level classifier trained on CT
images with 8 mm resolution is compared
to the hierarchical classifier (Section 3.1
and P-Fig. 3) trained on images with
16 mm and & mm resolution. This experi-
ment is repeated for MR images with 2 mm

© Schattauer 2012
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Data Size Increase with Each Landmark
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Fig. 9 The average volume size for hierarchical multi-landmark detection relative to average size of
whole lossless-compressed volumes (LS) and volumes of pSNR 70 (CS). When adding each landmark the

average volume size increases.

resolution and a 4 mm-2 mm hierarchy. In
» Figure 5, the median of the 80% smallest
errors® are plotted against the average vol-
ume size computed for each pSNR level.
The next experiment compares the
overall hierarchical detection using un-
compressed mages and images compressed
at pSNR 70. The hierarchical system is also
compared to a simpler algorithm operating

a  The large errors can be easily rejected as outliers
based on the detection score.

on uncompressed images with a single res-
olution. The results comparison is in
» Table 1.

4.3 Progressive Data Transmission
in Multiple Landmark Detection

The final experiment analyzes bandwidth
requirements when detecting multiple
landmarks. Clearly, with more landmarks
detected in a single volume the data size

© Schattauer 2012

that needs to be transmitted is increased.
We use the brain MRI dataset (pSNR 70)
and five landmarks described above. The
landmarks correspond to distinct brain
structures that are useful for automatically
estimating the mid-sagittal plane [26]. The
diagram of the Hierarchical Detection
Network (HDN) [21] is in »Figure 8.

The landmarks are projected onto the
mid-sagittal plane for display in » Fig-
ure 10. They are correctly detected despite
anatomical and intensity variations. Indi-
vidual landmarks for the first case from this
figure are shown in »Figure 11.

5. Discussion

The proposed progressive data trans-
mission for the hierarchical detection has
been analyzed in several experiments as de-
scribed in the previous section. The plotsin
» Figure 4 show that we can obtain better
detection performance when training on
compressed images thanks to the classifier’s
ability to adapt to the training data and ig-
nore inconsistencies caused by the com-
pression artifacts (see Section 3). In »Fig-
ure 5, the overall image sizes in the hier-
archical detection were compared to a
single level algorithm. By training on com-
pressed images we can achieve smaller de-
tection errors for a given average volume
size than by training on uncompressed im-
ages. The detection errors decrease further
when using the hierarchical approach due
to the robust search strategy. We found that
images at pSNR 70 provide accurate results
with significant reduction of overall image
size. The results summarized in »Table 1

- /

Fig. 10 Example images with ground truth locations (red boxes) and detection results (cyan boxes). Five landmarks are used to estimate the mid-sagit-
tal plane shown for three different cases.
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Axial

Coronal

Sagittal

Fig. 11

Example images with ground truth locations (red boxes) and detection results (cyan boxes) for five brain MRI landmarks of the first case from Fig-

ure 10: crista galli (CG), occipital bone (OB), the anterior of the corpus callosum (ACC), the posterior of the corpus callosum (PCC), and the brain stem (STEM).

All five landmarks are accurately detected.

Table 1

The median detection error of the hierarchical detection on images compressed at pSNR 70 (2nd and 5th column), on uncompressed images (3rd

and 6th column), and on a single resolution lossless-compressed images (4th and 7th column). The average size of uncompressed volumes is 3188 kB (4 mm
CT) and 3334 kB (2 mm MRI). The hierarchical algorithm trained with images of pSNR 70 requires the least amount of data without sacrificing the detection

accuracy.
cT MRI
16—8—4 hier 16—8—4 hier 4 mm 4-2 hier 4-2 hier 2 mm
pSNR 70 lossless lossless pSNR 70 lossless lossless
Error [mm] 3.87 3.54 3.98 2.50 2.37 2.27
Avg. Data Size [kB] 106.22 393.45 1345.96 16.99 168.07 984.76

show that an algorithm trained on images
compressed with lossy compression
achieves data size reduction by a factor of
3.7 (9.9 for MRI) when compared to a hier-
archical training on lossless-compressed
images, by a factor of 12.7 (58.0 for MRI)
when compared to an algorithm operating
on a single resolution, and by a factor of
30.0 (196.2 for MRI) when the original
(uncompressed) images are used. The
median detection error is comparable for
all three cases.

When the number of landmarks in-
creases, the data size that needs to be trans-

Methods Inf Med 3/2012

mitted also increases. We analyzed the per-
formance of multiple landmark detection
in - Table 2. The table shows that the detec-
tion error is low (2.12 mm on average) even
though images with pSNR 70 are used in
training and detection. The table also
shows that the average volume size used in
detecting each landmark is 7.34 kB. This is
on average 0.75% of the overall size of loss-
less-compressed volumes (LS) and 14.39%
of the overall size of volumes of pSNR 70
(CS). As before, large bandwidth savings
can be achieved when detecting individual
landmarks. The plot in »-Figure 9 analyzes

the total size when all landmarks are de-
tected together. Relative to CS, the total vol-
ume size is 71.96%. Therefore, when de-
tecting many landmarks in the same vol-
ume, the benefit of the feedback loop
(> Fig. 2) is lower. However, using lossy
compression still helps, since the average
volume size relative to LS is only 3.73% (re-
duction of the original size 26.8 times).
Relative to the original uncompressed size
(3334 kB), this size amounts to 1.10% (re-
duction 90.8 times).
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Table 2 The detection accuracy of five brain MRI landmarks (2nd column), average volume size (S)
in detection (3rd column), S relative to average size LS = 984.76 kB of lossless-compressed volumes (4th
column), and S relative to average size CS = 51 kB of volumes of pSNR 70 (5th column). The detection
errors are low despite using images with pSNR 70. The average volume size S is small.

Landmark Err [mm)] Size (S) [kB] S/ILS= 100 [%] S/CSx100 [%]
ACC 4 mm 2.74 10.10 1.03 19.80
ACC 1.83 1.13 0.1 2.22
CG 2.26 3.82 0.39 7.49
PCC 1.81 4.16 0.42 8.16
STEM 2.12 11.40 1.16 22.35
0B 2.57 6.09 0.62 11.94
Average 2.12 7.34 0.75 14.39

6. Conclusions

Cloud computing is creating transforma-
tional shift in the health care industry. Easy
sharing of information within a hospital,
clinic, community, or region is becoming
possible through the cloud- based Health
Information Exchanges (HIEs). This allows
multiple health systems to share a single
PACS server where all the medical images
are stored. Rural areas can benefit by con-
necting to the HIEs through the advance-
ment of telecommunications-based health
solutions and the broadband infrastructure
available through telehealth networks [27,
28]. Data transfer bottlenecks remain one
of the challenges of data-intensive appli-
cations spread across the boundaries of the
cloud. In order to minimize cost, it is
necessary to consider implications of traffic
at every level of the system [29]. This paper
addressed the problem of large data
transfer sizes in the application of anatomi-
cal landmark detection. Such application is
useful for visualizing and analyzing image
regions surrounding these landmarks.

We presented Detection in a Cloud (DiC)
system for anatomical landmark detection
in the cloud computing environment. At
the core of the system is a hierarchical
learning algorithm that propagates posi-
tion candidate hypotheses across a hier-
archy of classifiers during training and de-
tection. The algorithm only requires image
regions surrounding the candidates which
results in less bandwidth for remote data
access, Further bandwidth savings (with-
out sacrificing the detection accuracy) are

© Schattauer 2012

achieved by compressing the images re-
gions with lossy JPEG 2000. The total band -
width savings for retrieving remotely
stored data amount to 30.0 times (CT data)
and 196.2 times (MRI data) reduction
when compared to the original data size
and 12.7 times (CT) and 58.0 times (MRI)
when compared to data size after lossless
compression. We showed that during de-
tection of five MRI landmarks total band-
width amount to 90.8 times reduction
compared to the original volume size and
26.8 times reduction compared to data size
after lossless compression.

The proposed approach makes it possi-
ble to shift the integration, maintenance,
and detection software updates from the
client to the CAD server. Therefore, when
the classifiers are updated, they are im-
mediately available to all clients. In the
clinical environment, detected anatomical
parts can be reviewed on the client devices
remotely. The current system opens many
exciting future research directions both on
the algorithmic side as well as on the sys-
tems side. We are interested the most in
building more complicated models with
several landmarks of interest trained for
different modalities. Such large scale sys-
tems will require coordination of multiple
CAD servers possibly distributed in a wide-
area network.

There are challenges remaining to be ad-
dressed. First, quality level in the DiC sys-
tem has been chosen manually based on ex-
perimental evidence. For more compli-
cated systems, it will be necessary to select
the quality automatically at all levels and

thus minimize the total bandwidth for de-
sired detection accuracy. In other systems,
it will be useful to automatically select the
quality levels such that detection accuracy
is maximized given a fixed bandwidth. Sec-
ond, current multi-landmark detection al-
gorithm uses one of previously detected
landmarks to predict an approximate lo-
cation of the next landmark. Robustness
and the overall accuracy would be further
improved if multiple previously detected
landmarks were used for this prediction.
Solving these problems is the main focus of
our future work.
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