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Abstract

Recognizing multiple objects involves two inter-dependent tasks, object lo-
calization and classification. The goal of the object localization is to accu-
rately find the object pose parameters relative to an established reference,
such as the origin of the image coordinate system. The object classification
assigns class labels to the objects according to the pre-specified categories.
Multi-object recognition has been previously solved by designing a set of
individual single-object detectors or by training a combined multi-object
detection and classification system. In the medical domain, these mod-
els can be further improved by relying on strong spatial prior information
present in medical images of a human body. This chapter describes, how the
spatial prior can be used to recognize multiple anatomical structures which
results in the Integrated Detection Network. The structures are recognized
sequentially, one-by-one, using optimal order such that the later recognitions
can benefit from constraints provided by previously recognized structures.
The recognition relies on Sequential Estimation techniques, with the pos-
terior distribution of the structure pose and label being approximated at
each step by sequential Monte Carlo. The samples are propagated within
the sequence across multiple structures and hierarchical levels. The system
is general and provides accurate recognitions of anatomical structures in 3D
images of various modalities.
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1. Introduction

Recognizing multiple objects or anatomical structures has many applica-
tions in medical imaging systems, for example in multi-object visual track-
ing, to initialize segmentation of the structures, or to provide accurate mea-
surements. The goal of the recognition is to find the pose parameters of all
structures of interest relative to the origin of the image coordinate system,
camera, or other structures and to assign the correct object class label to
the structures. In the first step, a model is constructed from a set of train-
ing examples to capture the statistics of the object class. The parameters
are then found during inference by applying the model on a new image. In
generative models, the probability model consists of the object appearance
variations conditioned on the pose and a probability model of appearance
variations of the background along with the prior probabilities of each class.
The inference is computed by evaluating the posterior probabilities using the
Bayes’ theorem. In practice, it is very hard to model all variations of the
structures since the structure shape, shadows and occlusions, image charac-
teristics, and acquisition parameters can vary significantly. Discriminative
models are more tractable. The probability model consists of an object pres-
ence or class label conditioned on the appearance. The inference typically
computes the posterior probability given a set of discrete parameter values.
Multi-scale and sampling techniques are used to make the process efficient.

The robustness to the variations in the photometric appearance of the
structures is achieved by features that are invariant to intensity transforma-
tions. One example of such features are Haar features that compare inten-
sity statistics computed in adjacent rectangular windows of various config-
urations (Viola and Jones, 2004). Another popular feature types are Local
Binary Patterns (LBP) that relate the intensity values of a pixel to that of its
neighbors. When combined with Histograms of Oriented Gradients (HOG)
(Dalal and Triggs, 2005), invariance to small geometric transformations is
achieved by computing local histograms of the features. Larger geometric
transformations can be directly modeled by decomposing a structure into
parts (Felzenszwalb et al., 2010) and considering the statistical relationships
between the parts and the structure of interest. Local detectors can then
be improved by modeling the interdependence of objects using contextual
(Desai et al., 2011; Kumar and Hebert, 2006; Hoiem et al., 2008) and se-
mantic information. Spatial information can also be disregarded altogether
resulting in a bag-of-features model (Lampert et al., 2009). As an alter-
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native to manually engineered features, hierarchical feature representations
can be learned from large databases (Sermanet et al., 2014).

State-of-the-art approaches to multi-object detection (Viola and Jones,
2004; Felzenszwalb et al., 2010) rely on an individual detector for each ob-
ject class followed by post-processing to prune spurious detections within
and between classes. Detecting multiple objects jointly rather than individ-
ually has the advantage that the spatial relationships between objects can
be exploited. This is done implicitly in Deep Neural Networks, where the re-
lationships are encoded by hidden layers (Sermanet et al., 2014). Obtaining
a joint model of multiple objects involves the estimation of a large number
of parameters which increases the requirements on the training time and the
size of the annotation database. In situation, where this is not practical, the
multi-object detection task has been solved by multiple individual object
detectors connected by a spatial model. Relative locations of the objects
provide constraints that help to make the system more robust by focusing
the search in regions where the object is expected based on locations of
the other objects. Modeling long-range dependencies is straightforward in
these models. The most challenging aspect of these algorithms is designing
detectors that are fast and robust, modeling the spatial relationships be-
tween objects, and determining the order of object dependencies. In this
chapter, we propose a multi-object recognition system that addresses these
challenges.

The exposition starts in Section 2 by presenting a general framework for
multi-object recognition without considering contextual dependencies be-
tween objects. The recognition is acomplished by a discriminative appear-
ance model of each individual object. Section 3 then describes a Sequential
Sampling framework, where the interdependence between objects is modeled
by a transition distribution. The distribution specifies the “transition” of a
pose of one object to a pose of another object as detailed in Section 3.1. This
process relies on the strong prior information present in medical images of a
human body. Together, all detectors and any associated processing form the
Integrated Detection Network (IDN) presented in Section 3.2. Section 3.3
explains how to determine the size of the context region (detection scale) and
which objects to detect first in an optimal way. The chapter concludes by
highlighting examples of IDN applications in Section 4 and by final remarks
in Section 5.
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2. Independent Multi-Object Recognition

This section starts by discussing the independent recognition, where the
spatial relationships between objects are not explicitly modeled. The next
section then describes a technique that takes advantage of previously recog-
nized objects to improve the recognition of a new object.

The state of the modeled object s is denoted as θs, where θs = {πs, ys}.
The first term, πs, denotes the pose πs = {p, r, s} with the position p,
orientation r, and size s of the object s. The second term, ys, denotes the
object label. The set of observations for an object s is obtained from the
image neighborhood Vs. The neighborhood Vs is specified by the coordinates
of a bounding box within an N -dimensional image V , V : RN → I, where
I is the image intensity. The images are typically two or three dimensional.
The observations computed from Vs are features with a likelihood f(Vs|θs).
They represent the appearance of each object and are assumed conditionally
independent given the state θs.

The task of object recognition consists of detecting the object instance
inside the image V and identifying the object class both of which are ac-
complished by using observations computed from the image. The object s
is detected by estimating the pose parameters πs and classified by assigning
the label ys. The likelihood f(Vs|θs) can be formulated as:

f(Vs|θs) = f(Vs|πs, ys) = f(ys,πs|Vs)
f(Vs)

f(ys,πs)
= f(ys|πs, Vs)f(πs|Vs)

f(Vs)

f(ys,πs)
.

(1)
The term f(ys|πs, Vs) denotes the posterior of the object class label with
object pose πs given the observations from Vs. The term f(πs|Vs) is the
posterior of the pose given observations. The term f(ys,πs) denotes the
prior on the labels and pose parameters and is estimated from the training
data. The term f(Vs) is set to a uniform distribution.

The object recognition can be accomplished by sliding a window, where
the window defines the neighborhood Vs at each step. The observations
from Vs are used to classify the window by assigning the class label. The
object classifier is therefore represented by the model f(ys|Vs) which is the
posterior of the object class within the image neighborhood Vs:

f(ys|Vs) =

∫
πs

f(ys|πs, Vs)f(πs|Vs)dπs. (2)

In practice, the probability of the anatomical structure s being detected is
evaluated using a discrete set of pose parameter values {πs} and a binary
(object vs. background) or multi-object classifier.
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The set of best instance parameters θ̂s = {π̂s, ŷs} for each object s is
then estimated using the observations from Vs:

{π̂s, ŷs} = arg max
ys,πs

P (ys|πs, Vs)P (πs|Vs). (3)

To leverage the power of a large annotated dataset, discriminative classifier
(PBT (Tu, 2005)) is used to best decide between positive and negative exam-
ples of the object. PBT combines a binary decision tree with boosting, let-
ting each tree node be an AdaBoost classifier. This way, the miss-classified
positive or negative examples early on can still be correctly classified by
children nodes. Other classification approaches can be used as well.

3. Sequential Sampling for Multi-Object Recognition

Similarly to the individual detection of single objects, the goal of the
multi-object detection is to estimate the likelihood of the observations given
object parameters. The sequence of parameters of multiple objects is de-
noted as θ0:s = {θ0,θ1, . . . ,θs} and the sequence of volumes to compute
the observations as V0:s = {V0, V1, . . . , Vs}. It is possible to construct such
sequence since there exists prior knowledge for determining the image neigh-
borhoods V0, V1, . . . , Vs. The image neighborhoods in the sequence V0:s

might overlap and can have different sizes (Figure 1). An image neighbor-
hood Vi might even be the entire volume V . The order in this sequence is
determined manually based on the expert knowledge or automatically based
on the posterior probability of object poses in the ground truth region (see
more details below).

It is clear that the conditional likelihood model P (V0:s|θ0:s) is now much
more complicated. The posterior of the object classes f(y0:s|π0:s, V0:s) in-
volves the dependence of all instance labels jointly on all pose parameters
and all observations. Such a large search space is computationally pro-
hibitive both in training and in inference. Since the likelihood models in
practical situations lead to intractable exact inference, approximation by
Monte Carlo methods, also known as particle filtering or sequential estima-
tion, has been widely adopted.

Sequential Estimation techniques (Doucet et al., 2001), estimate the ob-
ject state θs using observations from V0:s in a sequential spatial order. This
way, the posterior distribution of the parameters (state) of each anatomical
structure is estimated based on all observations so far. This concept is used
to solve the multi-object detection problem by recursively applying predic-
tion and update steps to obtain the posterior distribution f(θ0:s|V0:s). The
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prediction step computes the probability density of the state of the object
s using the state of the previous object, s− 1, and previous observations of
all objects up to s− 1:

f(θ0:s|V0:s−1) = f(θs|θ0:s−1)f(θ0:s−1|V0:s−1). (4)

The state dynamics, i.e. relationships between object poses, are modeled
with an initial distribution f(θ0) and a transition distribution f(θs|θ0:s−1).
Note that here the first-order Markov transition f(θs|θs−1) is not used since
any detected object can depend on any other previously detected object.
When detecting the object s, the observation Vs is used to compute the
estimate during the update step as:

f(θ0:s|V0:s) =
f(Vs|θs)f(θ0:s|V0:s−1)

f(Vs|V0:s−1)
, (5)

where f(Vs|V0:s−1) is the normalizing constant.

V1 

V3 

V2 

V4 
V 

V5 

V6 

Figure 1: In multi-object detection, the set of observations is a sequence of image patches
{Vs}. The sequence specifies a spatial order of structures. The structures are detected in
this order which is automatically determined.

As simple as they seem these expressions do not have analytical solu-
tion in general. This problem is addressed by drawing m weighted samples
{θj

0:s, w
j
s}mj=1 from the distribution f(θ0:s|V0:s), where {θj

0:s}mj=1 is a realiza-

tion of state θ0:s with weight wj
s.

In most practical situations, sampling directly from f(θ0:s|V0:s) is not
feasible. The idea of importance sampling is to introduce a proposal distri-
bution p(θ0:s|V0:s) which includes the support of f(θ0:s|V0:s). This is better
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than sampling the parameter space uniformly (Tu, 2005; Viola and Jones,
2004), since sampling from a the proposal distribution (Liu et al., 2001) fo-
cuses on regions of high probability. This saves computational time as fewer
samples are required and increases robustness compared to the case, where
the same number of samples would be drawn uniformly.

It is now useful to discuss the concept of weighted samples. A set of
weighted random samples {θj

0:s, w
j
s}mj=1 is called proper with respect to f , if

for any square integrable function h(·) (Doucet et al., 2001)

E[h(θj
0:s)w

j
s] = cEfh(θ0:s), (6)

where c is a normalizing constant common to all m samples. Note, that the
θ estimated as

∑m
j=1w

j
sh(θj

0:s) does not depend on the normalizing constant
of f , i.e. c does not need to be known. In order for the samples from the
proposal p(θ0:s|V0:s) to be proper, the weights are defined as

w̃j
s =

f(V0:s|θj
0:s)f(θj

0:s)

p(θj
0:s|V0:s)

wj
s = w̃j

s/

m∑
i=1

w̃i
s. (7)

Since the current states do not depend on observations from other objects
then

p(θ0:s|V0:s) = p(θ0:s−1|V0:s−1)p(θs|θ0:s−1, V0:s). (8)

Note, that Vs was left out of the first term since the states in the sequence
θ0:s−1 do not depend on it. The states are computed as

f(θ0:s) = f(θo)

s∏
j=1

f(θj |θ0:j−1). (9)

Substituting (8) and (9) into (7), we have

w̃j
s =

f(V0:s|θj
0:s)f(θj

0:s)

p(θj
0:s−1|V0:s−1)p(θj

s|θ
j
0:s−1, V0:s)

(10)

= w̃j
s−1

f(V0:s|θj
0:s)f(θj

0:s)

f(V0:s−1|θj
0:s−1)f(θj

0:s−1)p(θj
s|θ

j
0:s−1, V0:s)

(11)

= w̃j
s−1

f(Vs|θj
s)f(θj

s|θ
j
0:s−1)

p(θj
s|θ

j
0:s−1, V0:s)

. (12)
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In this chapter, the transition prior f(θj
s|θ

j
0:s−1) is adopted as the pro-

posal distribution. Compared to the more general proposal, p(θj
s|θ

j
0:s−1, V0:s),

the most recent observation is missing. In practice, this does not pose a prob-
lem in detection since the predicted samples are near the likelihood peaks.
The importance weights are then calculated as:

w̃j
s = w̃j

s−1f(Vs|θj
s). (13)

Other proposal distributions to leverage relations between multiple objects
can also be designed.

When detecting each object, the sequential sampling produces the ap-
proximation of the posterior distribution f(θ0:s|V0:s) using the samples from
the detection of the previous object as follows:

1. Obtain m samples from the proposal distribution, θj
s ∼ p(θj

s|θ
j
0:s−1).

2. Reweight each sample according to the importance ratio

w̃j
s = w̃j

s−1f(Vs|θj
s). (14)

Normalize the importance weights.

3. Resample the particles using their importance weights to obtain more
particles in the peaks of the distribution. Finally, compute the ap-
proximation of f(θ0:s|V0:s):

f(θ0:s|V0:s) ≈
m∑
j=1

wj
sδ(θ0:s − θj

0:s), (15)

where δ is the Dirac delta function.

3.1. The Observation and Transition Models

The key components of the sequential sampling framework are the ob-
servation and transition models. The observation model f(Vs|θs) in the
update step describes the appearance of each object and is obtained from
Eq. 1. This corresponds to the likelihood of a hypothesized state that gives
rise to observations. As mentioned earlier, the model is based on a deter-
ministic model learned using a large annotated database of images. The
transition model in the prediction step describes the way states are propa-
gated between the image neighborhoods. Relying on the anatomical context
the transition kernel is based on a pairwise dependency

f(θs|θ0:s−1) = f(θs|θj), j ∈ {0, 1, . . . , s− 1}. (16)

8



Please note that a state of any previously detected object is used to compute
the transition. This is less restrictive than a Markovian process, f(θs|θs−1),
which would always use the immediate precursor. The distribution f(θs|θj)
is modeled as a Gaussian estimated from the training data. The statistical
model captures spatial relationships between the structures while ignoring
abnormal configurations that may be caused by a disease progression. Dur-
ing detection, the predictions are used as the best available estimates even
for abnormal cases.

3.2. Integrated Detection Network (IDN)

The computational speed and robustness of the recognition system is in-
creased by hierarchical processing. Further performance improvements are
obtained by starting from structures that are easier to detect and constrain-
ing the detection of the other structures by exploiting spatial configurations.
This design results in a large number of observation and transition models
such that multiple structures can be efficiently recognized. The models and
any intermediate processing are managed by the Integrated Detection Net-
work (IDN). As shown in Figure 2(left), IDN is a pairwise, feed-forward
network. IDN consists of nodes that perform operations on the input data
and produce zero or more output data. The operations, such as candidate
sample detection, propagation, and aggregation, are only related to each
other through data connections. This makes it possible to easily add new
nodes and data types to an existing network.

In detection, one major problem is how to effectively propagate detection
candidate samples across the levels of the hierarchy. This typically involves
defining a search range at a fine level where the candidates from the coarse
level are refined. Incorrect selection of the search range leads to higher
computational cost, lower accuracy, or drift of the coarse candidates towards
incorrect refinements. The search range in IDN is part of the model that
is learned from the training data. One difficulty of sequential processing
of multiple structures is in selecting the order of detections such that the
overall performance is maximized. IDN detection schedule is designed to
minimize the uncertainty of the detections as described in the next section.

3.3. Detection Order Selection

The spatial order of detections in IDN is automatically determined dur-
ing training. The goal is to select the order such that the posterior probabil-
ity P (θ0:s|V0:s) is maximized in the neighborhood region around the ground
truth. Since determining this order has exponential complexity in the num-
ber of objects, a greedy approach is adopted. The training data is first
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split into two sets. Using the first set, all object detectors are trained in-
dividually to obtain posterior distributions f(θ0|V0), f(θ1|V1), . . . , f(θs|Vs).
The second set is used for order selection as illustrated in Figure 2(right) as
follows.

Suppose that the detection order is determined up to s−1, θ(0),θ(1), . . . ,θ(s−1).
The order selection aims to add to the network the best pair [s, (j)] (or
feed-forward path) that maximizes the expected value of the following score
S[s, (j)] over both s and (j) computed from the second training set:

S[s, (j)] = (17)∫
θs∈Ω(

˜θs)

θ(0:s−1)∈Ω(
˜θ(0:s−1))

f(θ(0:s−1)|V(0:s−1))f(θs|θ(j))f(Vs|θs)dθsdθ(0:s−1),

where Ω(θ̃) is the neighborhood region around the ground truth θ̃. The
expected value is approximated as the sample mean of the cost computed
for all examples of the second training data set.

(0) (1) (s-2) 

(2) (s-3) 

(s-1) 

s 

node1 

data1 data2 

Figure 2: Integrated Detection Network (IDN) consists of nodes that operate on data
(left). Illustration of the Integrated Detection Network (IDN) and order selection (right).
See text for details.

During hierarchical detection, larger object context is considered at coarser
image resolutions resulting in robustness against noise, occlusions, and miss-
ing data. High detection accuracy is achieved by focusing the search in a
smaller neighborhood at the finer resolutions. The resolution level and the
size of the image neighborhoods {Vi} can be selected using the same mech-
anism as the order selection by introducing additional parameters (Sofka
et al., 2014). Choosing the scale automatically is advantageous since ob-
jects have different sizes and the size of the context neighborhood is also
different.
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Figure 3: Automatic recognition results (blue) and ground truth reference (red) of five
landmarks in two brain MRI scans: Crista galli (CG), occipital bone (OB), the anterior
of the corpus callosum (ACC), the posterior of the corpus callosum (PCC), and the brain
stem (STEM).

4. Applications

This section highlights applications where IDN is effective in recogniz-
ing multiple anatomical structures. The first application is to recognize
landmarks in brain MRI scans (Sofka et al., 2012). A total of 384 vol-
umes were used training and 127 for testing with the average volume size
of 130× 130× 101 voxels after resampling to 2 mm isotropic resolution. In
each volume, the system detects crista galli (CG), occipital bone (OB), the
anterior of the corpus callosum (ACC), the posterior of the corpus callosum
(PCC), and the brain stem (STEM). The average detection error is 2.37
mm. Example detection are shown in Figure 3.

The second application shows how to automatically detect and measure
anatomical structures in fetal head ultrasound volumes (Sofka et al., 2014).
A total of 1982 volumes were used for training and 107 for testing. The
average volume size was 186 × 123 × 155 voxels after resampling to 1 mm
isotropic resolution. The IDN produced a standardized visualization plane
with correct orientation and centering as well as the biometric measurement
of the anatomy. The plane parameters and the measurement were derived
from the pose of the anatomical structure. The following measurements
were obtained (Figure 4): Cerebellum, Cisterna Magna, Lateral Ventricles,
Occipitofrontal Diameter, Biparietal Diameter, and Head Circumference.
The average measurement error was below 2 mm and within the inter-user
variability.
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Figure 4: Fetal Head and Brain (AFHB) system provides automatic measurements at three
standardized planes: Ventricular (a), Thalamic (b), and Cerebellar (c) from a 3D ultra-
sound volume. Shown are example results for Cerebellum (CER), Cisterna Magna (CM),
Lateral Ventricles (LV), Occipitofrontal Diameter (OFD), Biparietal Diameter (BPD), and
Head Circumference (HC).

5. Conclusions

This chapter presented the Integrated Detection Network (IDN) for rec-
ognizing multiple objects by exploiting their relative spatial configurations.
Modeling interdependence of objects introduces additional constraints that
make it possible to achieve high localization accuracy. The approach is mo-
tivated by Sequential Estimation techniques that estimate a spatial order
of probability distributions for a sequence of objects. The computation re-
quires a likelihood of a hypothesized state (object pose and label) that gives
rise to observations and a transition model that describes the way the states
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are propagated between objects. Sampling techniques have been used to
approximate the posterior distribution and make the modeling tractable.
At each step, the prediction step involves sampling from the proposal dis-
tribution of the current state conditioned on the history of states and the
history of observations. The posterior distribution of the pose (state) of each
anatomical structure is then estimated during the update step based on the
prediction and all observations so far. The observations are features com-
puted from image neighborhoods surrounding the anatomies. The likelihood
of a hypothesized state that gives rise to observations is based on a deter-
ministic model learned using a large annotated database of images. The
transition model that describes the way the poses of anatomical structures
are related is Gaussian.

The modular nature of the IDN makes it straightforward to adopt differ-
ent observation and transition models. These models can capture more intri-
cate object relationships (e.g. context from multiple previously detected ob-
jects) or introduce application-specific constraints. All these properties con-
tribute to the improved detection and classification accuracy which makes
the IDN attractive choice for multi-object recognition tasks.
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