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Abstract—Motivated by the goals of automatically extract-
ing vessel segments and constructing retinal vascular trees with
anatomical realism, this paper presents and analyses an algorithm
that combines vessel segmentation and grouping of the extracted
vessel segments. The proposed method aims to restore the topology
of the vascular trees with anatomical realism for clinical studies
and diagnosis of retinal vascular diseases, which manifest abnor-
malities in either venous and/or arterial vascular systems. Vessel
segments are grouped using extended Kalman filter which takes
into account continuities in curvature, width, and intensity changes
at the bifurcation or crossover point. At a junction, the proposed
method applies the minimum-cost matching algorithm to resolve
the conflict in grouping due to error in tracing. The system was
trained with 20 images from the DRIVE dataset, and tested us-
ing the remaining 20 images. The dataset contained a mixture of
normal and pathological images. In addition, six pathological fluo-
rescein angiogram sequences were also included in this study. The
results were compared against the groundtruth images provided by
a physician, achieving average success rates of 88.79 % and 90.09 %,
respectively.

Index Terms—Kalman filter, retinal vascular tree, vascular tree
reconstruction.

1. INTRODUCTION

DENTIFYING the organization of vascular trees provides
I valuable information for physicians performing surgical
planning and outcome assessment, and for monitoring the pro-
gression of vascular diseases [1]. For treatment of strokes, with
the complete map of the vascular trees, neurosurgeons, and radi-
ologists can make the best decision about vessel occlusion and
ensure collateral flow provided by other parts of the circulation
system [2]. A liver transplant is a procedure in which a healthy
voluntary donor gives a part of his or her liver to another person.
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(a) (b)

Fig. 1. Retinal vascular tree reconstruction with anatomical realism. (a) Un-
grouped vessel segments, each assigned a unique color. (b) The expected result
of vessel tree reconstruction with anatomical realism. Segments of the same tree
are connected and given the same color—each segment is connected to its child
segment(s) with a number that immediately follows its number.

A careful analysis of the branching pattern and morphology of
the vasculature can reveal the suitability of the donor. For oncol-
ogy resection on a patient with liver cancer or liver metastasis,
identifying vascular territories is crucial to providing resection
proposals and for preoperatively estimating resection volumes
and patient outcomes [3].

The goal of the proposed system is to reconstruct topologies
of the retinal vascular trees with anatomical realism. In retinal
images, vessels are organized in trees with roots inside the op-
tic disk. Following the main arteries and veins, vessels branch
out until capillaries (the thinnest retinal vessels) are reached.
To reconstruct the vascular trees, segments from vessel tracing
should be connected to the parent segments based on physio-
logical properties, instead of proximity. In Fig. 1(a), the vessel
segments, each assigned a unique color, can be the result of
running a vessel tracing algorithm. If the vessels are connected
(grouped) with anatomical realism, the expected result is shown
in Fig. 1(b), where each segment is connected to its child seg-
ment(s) with the same color and with a number that immediately
follows its number. Extracting the trees allows the visualization
of the vasculature, which can facilitate studies of blood flow by
displaying traversal from any given point to another within the
same tree. It is also a precursor for automated quantification of
geometrical and topological properties of veins and arteries for
studies of medical conditions such as hypertension [4].

This proposed method performs grouping on the extracted
vessel segments at junction points by considering the continuity
of vessel properties. Challenges are as follows.

1) Incomplete tracing: Vessels of low contrast are often par-

tially traced, especially near junctions with other vessels.

2) Unreliable tracing at junctions: Certain vessel properties,

such as vessel width and vessel direction, are less reliable
near and at junctions due to tracing limitations. In addition,
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vessels crossing at a very sharp angle sometimes can be
incorrectly traced as one big vessel at the junction. As
a result, a crossover is turned into two bifurcations (see
Fig. 7).

To improve the tracing of low contrast vessels based on [5],
both vesselness and connectedness are exploited to maximize
the completeness of vessel extraction. For grouping with unre-
liable trace results at the junction points, the Kalman filter and
minimum-cost matching are combined to ensure the continuity
of vessel segments at junction points by taking into account
the variations in width, curvature, and intensity along vessel
segments. The proposed method is an extended version of our
previous method [6], [7]. Preliminary results using both the trac-
ing and grouping with only the Kalman filter can be found in our
earlier publications [6], [7]. Contributions of this study include
the enhancement using minimum-cost matching for higher ro-
bustness, complete analysis of the system using the DRIVE
dataset, and the generalization of the algorithm for both color
and fluorescein images. In this paper, we include the discussion
of all major components of the system for completeness.

II. RELATED WORK

Automated analysis of retinal images has been an active re-
search topic. There is a strong medical need of measurements
specific to vascular trees [4], [8]-[14]. One application is the
measurement of the the arteriolar-to-venous (A/V) diameter ra-
tio [4], [8]-[11]. Clinical studies suggest that narrowing of the
arterial blood vessels in the retina may be an early indicator of
hypertension [11]-[14] and atherosclerosis, which is a process
of inflammation in the vessel wall that leads to plaque formation
and areduction in arterial flexibility [15]. Vascular trees can also
be used to analyze important features in retinal images, such as
the optic disk and macula. This is crucial for diagnosing diseases
such as macula degeneration—drusens close to the macula need
immediate attention, whereas drusens on the periphery might
need to be monitored only.

Two major approaches on the construction of vascular struc-
ture appear in the literature. One approach, named growing-
based method, is to grow either the vascular regions, which are
later transformed into vascular trees [3], [16], or the skeletons
directly [17], [18], starting from some seed points. The other
approach, named the grouping-based method, is to build the
trees from detected vessel segments using perceptual grouping
techniques [19]-[25].

For growing-based methods, Selle et al. [3] segmented ves-
sels using a threshold-based region-growing method, with the
threshold value automatically generated. The segmented vas-
cular structure is skeletonized, and transformed into a vascular
“forest” that contains a number of directed acyclic graphs, using
a graph theoretical method. Yim et al. introduced a similar ap-
proach. [16]. The tree is generated by the ordered region growing
(ORG) technique. A seed is provided at the root of the tree. The
growth, started from a user-defined point, is in the direction of
higher intensity. The result of ORG is a graph. However, it is
not clear how the ramifications are handled. Following ORG is
either skeletonization or pruning. Instead of extracting the vas-
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cular regions, Haris ez al. [17] and Liu and Sun [18] traced the
vessel centerlines. In [17] and [18], the tree is constructed as the
vessels are being traced. Starting from a seed point, vessel pixels
are found recursively along the vessel centerline. Ramifications
are handled in a breadth-first-search manner.

For grouping-based methods, Jomier et al. [19] and Bullitt
et al. [20] both performed grouping of vessel segments to form
a minimum spanning tree, but with different minimization cri-
teria. The authors in [19] minimized the Mahalanobis distance
of features defined at each junction, while [20] performed the
minimization based on linear distance and image intensity in
suspected regions of connection. Al-Diri et al. [21] presented
self-organizing feature maps to model cost functions for the
junctions in order to resolve the configuration of local sets of
segment ends, thus determining the network connectivity. Mon-
tesinos et al. [22] constructed trees by performing local to the
global optimization of an active contour by dynamic program-
ming. Coppini et al. [23] proposed a bottom-up coronary artery
extraction method based on angiogram edges. These edges are
grouped into edge segments, which are organized to bar prim-
itives, and ultimately linked to form artery segments. An al-
gorithm developed by Deschamps and Cohen [24], [25] first
converts the vascular image to a threshold “vessel potential”
image and performs perceptual grouping and contour comple-
tion. This fast marching algorithm identifies contours as minimal
paths between connected components.

III. VESSEL SEGMENT EXTRACTION

In order to identify vessel pixels, we propose an enhanced
method that improves upon an existing vessel extraction al-
gorithm [6]. This method combines matched filter responses,
confidence measures, and vessel boundary measures. Matched
filter responses are derived in scale space to extract vessels of
widely varying widths. A vessel confidence measure is defined
as a projection of a vector formed from a normalized pixel neigh-
borhood onto a normalized ideal vessel profile. Vessel boundary
measures and associated confidences are computed at potential
vessel boundaries. Combineding these responses forms a 6-D
measurement vector at each pixel. A learning technique then
maps this vector to a likelihood ratio that measures the likelihood
ratio vesselness (LRV) at each pixel. The learning technique is
the optimal test statistic by the Neyman—Pearson Lemma [26].
The result of LRV computation for Fig. 2(a) is Fig. 2(b), which
is enhanced for display. Tracing of vessel segments consists
following three major steps.

1) Seed point initialization: The algorithm analyzes the im-
age along a coarse grid to detect seed locations on blood
vessels which are gray-scale minima between opposite
signed, close-to-parallel 1-D edges. The direction of trac-
ing at a seed point is the eigenvector corresponding to
the smallest eigenvalue of the local, multiscale Hessian
around the seed location. Vessel width is found from the
maximum matched filter response in scale space applied in
this direction. The seed points are sorted based on strength
so that when tracing starts, the most reliable points are se-
lected first.
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(a)

Fig. 2.

(a) (b)

Fig. 3. Failure in tracing due to missing seed points. (a) Yellow dots are the
seed points. The red ellipse contains the vessel without seeds. (b) Result of
tracing. The arrow indicates the missing trace.

2) Recursive tracing: Starting from a seed point that is not on
any previously traced vessel segments, the vessel location,
vessel tangent direction, and vessel scale are updated at
each step of tracing. This is achieved by searching for the
maximum scale-space response over +20 degrees change
in orientation, &1 steps in scale space, and £2 pixel steps
in the normal direction. If the largest response is non-
positive, tracing is terminated. Otherwise, a step of two
pixels is taken along the updated tangent direction, and
the process is repeated.

3) Pruning: Recursive tracing using only matched filter often
results in overtraced results. After all seed points have been
visited, the postprocessing verification step removes trace
points with the LRV value below a threshold set to 2 as
in [5]. Here, we adopt the threshold value for vesselness
directly from the original paper on LRV [5]. The range of
this vesselness measure is from 0 to 10??. In particular,
the LRV measure of 1.0 indicates an equal chance that a
pixel belongs to vessel or nonvessel. When the value of
LRV measure is 2.0, the current pixel is twice as likely
to be on-vessel as off-vessel. Consequently, by setting
the threshold to 2, we are more confident that a vascular
structure is present. Fig. 2(c) shows the tracing results.

A. Improving Seed Points Detection

Potential problems with LRV tracing include missing seed
points for small vessels, as Fig. 3 shows, and determination of
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(b) (c)

Example shows the results of LRV and LRV tracing. (a) Color retinal image. (b) LRV result enhanced for display. (c) Result of LRV tracing.

the threshold value in pruning. To mitigate both problems, the
proposed LRV tracing method includes the detection of junction
points for the placement of extra seed points and combination of
vesselness and connectedness for pruning to alleviate the depen-
dence of a single threshold value on LRV. These enhancements
are based on tensor voting [27] to determine whether a pixel is
likely to be on a junction or a curve.

When tensor voting is performed, each pixel encoded as a
plate tensor sends its tensor to its neighboring pixels through
its voting field. The result of voting at each pixel is a variance-
covariance matrix consisting of eigenvalues and eigenvectors.
Let Anin and Ay ax be the minimum and maximum eigenval-
ues, respectively. A pixel is on a curve structure if its A ax
is substantially larger than X,,;,, whereas a pixel may be on a
junction of two or more curves if both eigenvalues are similar.
In other words, A, provides a good indication that a pixel
is on a continuous structure, such as a curve, and serves as a
measure of connectedness of the pixel with its neighboring pix-
els. Alternately, Ap,;, provides the saliency for junctions. Both
connectedness and junction saliency maps are obtained from the
LRV image, instead of the original image. This is because the
former excludes nonvessel structures with well-defined bound-
aries, such as the optic disk.

To maximize the likelihood that at least one seed point is
found on every vessel, the proposed method includes the seed
points defined by the LRV tracer [Fig. 3(a)] and the points near
vessel junctions. The motivation to adopt the latter is rather in-
tuitive, since blood vessels are naturally connected. Thus, if the
parent vessel has been traced, the vessels that branch out of it are
less likely to be missed if seeds are placed near the junctions. To
enable identification of a junction before all vessels that come
to meet are extracted, potential junction locations are detected
using the junction saliency map, as Fig. 4(c) shows. The candi-
date junction points are obtained by performing nonmaximum
suppression [28] on the junction saliency map. The circles in
Fig. 4(c) indicate candidate junction points found on the junc-
tion saliency map. Given a seed point located on the center of a
vessel junction, it will inevitably favor tracing along main ves-
sel. Thus, main vessel segment will trace the junction seed and
leave no seed point for branch vessel. In order to avoid such
undesirable situations, we propose to place extra seed points
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Fig.4. Example of tensor voting on an LRV image. (a) LRV image. (b) Curve
saliency map for the computation of the connectedness values. (c) Junction
saliency map for computation of the extra seed points near vessel junctions.
(d) Seed points near a vessel junction. The red dot indicates the center of the
junction. Twelve equally spaced green dots are the seed points on the periphery
of the disk centering at the junction with the radius as a function of the vessel
width. In (a) and (b), the arrows indicate thin vessels enhanced in the curve
saliency map. In (a) and (c), the circles are centered at the candidate junction
points, which define extra seed points to be included in vessel tracing.

around a candidate junction point. At each candidate junction
point, we draw a circle with radius equal to the vessel width ex-
tended by 5 pixels. On the periphery of this circle, we generate
12 equally spaced points, as shown in Fig. 4(d), and utilize them
as the extra seed points.

B. Robustness of Pruning

A tradeoff must be made between false positive and false
negative rates if pruning of the overtraced result uses only a sin-
gle threshold value on the LRV. Reducing the threshold value
increases both the true and false positives. To improve the robust-
ness of pruning, the proposed method considers both vesselness
and connectedness measures of a pixel—points with high con-
nectedness are likely to be on a continuous structure, such as a
vessel, even if the vesselness measure falls below the threshold
value. The connectedness value for each pixel is obtained di-
rectly from the curve saliency map, as shown in Fig. 4(b). We
obtain a connectedness threshold using a simple global thresh-
olding method to partition the curve saliency map histogram H.
However, since the maximum saliency value can go as high as
5 x 10%, pixels with high saliency values are iteratively elimi-
nated to reduce their effect on the computation of the threshold
value. The algorithm is as follows, starting with n being the
maximum saliency value.
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1) Calculate the average curve saliency value 7T =

>y iH]i]
i HIL T )
2) Compute the average low curve saliency value p; =

T . .

% and average high curve saliency value py =

i=1
i ixHI] .
ST HT of the two partitions.

3) Update n: n = 1742,

4) Repeat steps 1 to 3 for 3 times.

5) Return 7T as the threshold value for connectedness.

Given traces produced by the matched filter, trace points of
each trace are revisited consecutively, and the vesselness and
connectedness measures are examined. If the former is below the
threshold, which is set to 2, the pixel and the remaining ones in
the trace, is discarded if 1) it is one of the first three trace points,
2) previous two trace points have vesselness measures below
the threshold, or 3) the connectedness is below the threshold.

At a crossover, it is possible that the vessel tracer follows a
vessel that is not anatomically connected to its current vessel.
As aresult, the extracted vessel segment may contain segments
from different blood vessels when tracing terminates. Before
grouping the vessel segments for vessel tree reconstruction, ev-
ery vessel segment is broken up into shorter pieces at junctions
with other vessel segments to ensure that the basic components
for grouping are segments that contain only points from the
same blood vessel.

IV. VESSEL GROUPING

Given the set of traced vessel segments, the grouping algo-
rithm connects segments to restore the topology of an anatom-
ically realistic vascular tree. Fig. 5 presents an overview of the
grouping process. Segments are prioritized for grouping. Ini-
tially, segments that intersect with the boundary of the optic
disk (chosen manually) are assigned the first priority. Those
segments are roots of constructed vessel trees. As grouping
progresses, segments close to vessels that are already part of
constructed trees are assigned the second priority. Segments of
the same priority are handled in any order before segments of
the next priority.

The process of connecting the segments to form a vessel
starts from an ungrouped segment with the highest priority, and
iterates three steps: 1) iteratively correcting and learning the
continuity pattern of the current segment using the extended
Kalman filter, 2) picking the next segment with the highest
continuity in the neighborhood of the end point of the current
segment, and 3) regrouping using minimum-cost matching if the
chosen segment has been grouped. If the next segment cannot
be located, the process terminates for the current vessel, and the
priorities of the remaining ungrouped segments are updated if
necessary. This tree reconstruction process terminates when no
segment of first or second priority can be found. Constructed
vessels that are initialized with vessels of second priority are
connected to the nearest vessel and become part of a vessel tree.
The final result is a set of trees whose root segments intersect
with the boundary of the optic disk.
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Set of ungrouped vessel segments U
and grouped segments G={}

Are there segments with
priority assignment?
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Yes
Yes
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Update ranking of
segments in U

No
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Any segments in U near the end of $?
Yes

Select the best segment C, and
make C the current segment S

Fig. 5. Flow chart of perceptual grouping process.

A. Vessel Grouping by the Kalman Filter

Some vessel properties vary gradually during the grouping
process. To take this observation into consideration, we assume
constant changes of two important properties: vessel width and
intensity. Using the training images from the DRIVE dataset, it is
possible to calculate the average changes from one vessel point
to the next coming from the direction of the root. The average
decrements for vessel width and intensity are 0.0147 pixel and
0.23 gray level, respectively. In addition, the vessel direction
usually varies continuously along a vessel segment. The next
vessel segment can be extrapolated along the vessel direction.
The proposed method adopts an extended Kalman Filter to learn
the characteristics of a vessel segment to ensure best continuity
when choosing for the next segment for grouping, as Fig. 6
shows. Each trace point p;, is associated with a seven-tuple,
state vector X, = (mk,yk,Gk,dk,Gk,Gk,dk), where z;. and
yr form the coordinate, GG; is the intensity value, dj is the
vessel width, ;. is the direction of the vessel at py, Gk is the
change in the intensity value, and dy is the change in the vessel
width. If a color image is given as the input, G, is the green
channel that gives the highest contrast between the vessels and
the background [29].

At py, the system model and the observation model are,
respectively, defined as

X = fro1(Xp—1) + Wiy (D
Xz = hy (Xk,) + Vg 2)

where X7 is the five-tuple observation vector
(xf,y7,GY,d;,07) at pip. In the proposed approach, X
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Fig. 6.  Geometric illustration of the estimation-update process of grouping.
The vessel point position is estimated to p; . at d;, pixels ahead and adjusted
to the actual one pj | by the vessel tracer. d; and 6 are vessel width and
vessel tangent direction at the kth position.

comes from the LRV vessel tracer. (z7,y7) is the location of
the centerline point. G, is the gray-scale intensity value at
(xf,y7). df, is the width which is the distance between the
two edge points detected by LRV along the line perpendicular
to the vessel direction at (x9,y?). 67 is the angle between the
z-axis and the line connecting the current and next trace points.
W and V, are the system noise and the observation noise,
respectively.

In grouping of blood vessels, the relationships between the
seven state variables are defined as follows:

X = fic1(Xpo1) + Wyoq =

T 21 +dp_1 X cosO_1 ] 0
Ye—1 + dp—1 X sin Oy 0
Gk'fl + Gk,l 0
= dr—1+d1 +1 o0 3)
Or -1 w,
Gk71 wo
I dy s I L

w1 ,we are the system errors, which mainly come from the un-
predictable vessel direction change and the quantization error
of intensity values. wy is the system error as the actual positions
of image points are discretized into integral numbers of pixels.
w; are assumed to be mutually independent, zero mean white
Gaussian noise with a covariance matrix Q, which is determined
as follows:

0000 0 0 0
0000 0 0 0
0000 0 0 0

Q=1/0000 0 0 0 )
000002 0 0
0000 0 10 0
0000 0 0 10
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The nonzero entries are estimated using the 20 training images
in the DRIVE dataset. The higher the covariance values, the
stronger the influence of the observation measurements will be.

The state variables are related to the observation variables by

Ty (%]

Yk U2
Xp=h(Xe) + V=[G, | + | 5)

dp vy

9k Vs

where vy, ... ,vy, and v5 are observation errors arising primarily
from the vessel tracer. v; are assumed to be mutually indepen-
dent and zero mean white Gaussian noise with a covariance
matrix R, which is determined as follows:

100 0 O
01 0 0 O
R=(0 01 0 0[. 6)
00 0 1 0
0 0 0 0 02

R(i, i) for i = 1..4 are set to 1 since the measurements of cen-
terline locations, color intensity, and vessel width are quantified
to the nearest integers. R(5, 5) for 6;, is obtained from Q(5, 5).
Opposite to Q, the smaller the covariance values, the stronger
the influence of the observation measurements will be.

The Kalman theory gives the equations for the optimal es-
timate Xk\k—l of X given the statistics of the system and
observation noise from Xk—1|k—1~ The Kalman filter has two
distinct phases: predict and update. In the predict phase, the
previous state estimate Xk,l [k—1 18 used to produce an estimate
of the current state Xk‘k,l. The a priori state estimate and the
estimate covariance are computed, respectively, as

X1 = fro1(Xp k1) (7
Prio1 = APr_p AL + Q. (3)
where the matrix Ay is defined as 0 f},_1 (Xy_1)/0Xk—_1:
A = Ofr—1(Xp-1)
0X 1
1 0 0 coslp_1 —dxsinf,_1 0 0T
0 1 0 sinfp_; dxcosb,_; 0 O
0 0 1 0 0 1 0
=1|0 0 0 1 0 0 1 )
0 0 0 0 1 0 0
0 0 O 0 0 1 0
L0 0 0 0 0 0 1]

In the update phase, the current a priori prediction is com-
bined with the current observation information to refine the
state estimate. The a posteriori state estimate and the estimate
covariance are computed, respectively, as

Xk\k = Xpot + K (X] = hie (Xpppo1))
P = (I — K Hy )Py

(10)
an
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Fig. 7. Incorrect tracing, resulting in splitting of one crossing into two
branches. The system resolves this type of conflict by performing minimum-cost
matching. With minimum-cost matching, S1, S2, S¢, and Sy are regrouped to
maximize the total continuity at the junction.

where the optimal Kalman gain Kj, is defined as

K = Py H] (H; P Hf +R)™". (12)
The matrix Hy, is defined as 0hy, (X )/0X g 1:
1 0 0 00 0 O
01 0 0 0 0 O
H:M= 010000 (13)
g 0Xj-1
00 0 1 0 0 0
00 0 0 1 0 O

For each vessel, Xo is obtained from the first trace point of
the root segment given by the LRV tracer with Gy, dy set to
1. Oy is the vessel direction obtained from the first and second
trace points. Py is the diagonal matrix containing the estimated
deviation of the seven state variables:

1000 0 00
0100 0 00
0010 0 00

PB=10001 0 00 (14)
00000500
0000 0 10
0000 0 0 1

When the Kalman filter reaches the end of a vessel segment,
X4 is chosen from the segments that come to meet at this junc-
tion in the search range of Xk‘ #—1', and the segment in which
X resides is the one to be connected to the current segment.
X is the state vector of the first trace point of the neighboring
segment with the minimum Mahalanobis distance defined as
follows:

(i (K1), X3)

= (i (Rpr) = XOTE (e (Ky) — X9). (19)

IThe search range is defined to be m pixels away from )A(k |k—1> Where m is
the maximum vessel width of the image.
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TABLE I
COMPONENT ANALYSIS: SUCCESS RATES FOR 20 IMAGES FROM THE DRIVE DATASET

LRV Tracing Modified LRV Tracing
(1829 segments/63718 trace points) | (1874 segments/68852 trace points)
Experiment 1 2 3 4 1 2 3 4
Success rates(%) || 75.34 | 79.06 | 76.00 81.14 | 78.23 | 85.06 | 81.70 88.79
Standard deviation(%) 3.08 3.88 3.26 3.92 3.71 5.60 4.33 4.30

The covariance matrix ¥ was obtained using the 20 training
images. Finally, the corrected state vector Xk‘k becomes the
first state vector of the new segment. The grouping process for
the current vessel terminates if no ungrouped segment is found
in the search range of ka,l.

B. Improving Continuity Using Minimum Cost Matching

During the grouping process, the chosen segment with the
minimum Mahalanobis distance may already be connected to
another vessel. The system resolves this type of conflict by
performing minimum-cost matching [30]. This problem can be
formulated as a weighted bipartite matching problem. In a graph
representation, the vessel segments are the colored vertices and
the Mahalanobis distance d(.) between two segments is the
weight assigned to the edge connecting two vertices. To assign
the colors to the vertices (vessel segments) in the graph, the
current vessel segment is assigned color ¢, and all its potential
successors are assigned color ¢y. If the successor C' with the
least d(.) value is already grouped, label the current parent
segment of C' the color ¢, and all the potential successors of
the parent segment are colored co as well. Edges are defined
between every vertex of ¢; and vertex of ¢;. The minimum-cost
matching problem can be easily solved using the maximal flow
algorithm [31] by connecting all vertices of c; to a super source
vertex and connecting vertices of ¢y to a super sink vertex.

Fig. 7 shows an example of minimum-cost matching. S;, S,
are first connected before grouping of S, takes place. When
choosing the next segment for grouping at the end point of Sy,
S, is again chosen as the next candidate segment because it has
the highest continuity with S; among segments in the search
range of S,. Both S} and S5 are given color ¢;, and S, and
Sy given color ¢y (S5 is not considered in this example since
it is already connected to S..) With minimum-cost matching,
instead of choosing the second candidate S4 for Sy, Sy, Ss, S,
and S, are regrouped to maximize the total continuity—which
is to minimize the sum of the Mahalanobis distances—at the
junction. If grouping of S with Sy and Sy with S, has higher
total continuity than grouping of .S; with S, and Sy with Sy, the
former will be accepted as the new grouping result. Otherwise,
grouping of S7 and S. will remain intact and Sy will be grouped
to Ss.

V. EXPERIMENTAL ANALYSIS

The proposed system trained and tested using the DRIVE
dataset [32]. The first 20 images were used to train the Kalman
filter system model and to estimate the Mahalanobis distance co-
variance matrix. The remaining 20 images were used to test the
system, and the set consists of 17 relatively normal images and 3

(b)

Fig. 8. Improvement on vessel extraction over the original LRV algorithm for
tree reconstruction. (a) Result of LRV tracing with the threshold value of 2.0 as
set in [5]. (b) Result of our improved tracing algorithm. The red circles indicate
vessels discarded by the original LRV algorithm.

pathological images of various degree of severity. Images were
acquired using a Canon CR6 nonmydriatic 3CCD camera at a
45 field-of-view and are 24-bit color at a resolution of 768 x 584
(the fundus occupies a circle of diameter approximately 540
pixels about 50% of the image).

The results of vascular tree reconstruction were compared
against the groundtruth images provided by a physician. Figs.
9(a) and 11(b) are examples of groundtruth images. Each retinal
vascular tree is assigned a nonwhite color such that trees that
cross are of different colors. An area is painted white if more than
one vessel passes through it. A segment is painted gray if it does
not belong to any retinal vascular tree. Such vessels are choroidal
vessels in the choroidal layer, as seen in Fig. 11(b), and are not
considered, since the proposed system aims to reconstruct retinal
vascular trees only.”

In our performance analysis, a segment is correctly connected
to its parent segment if its color in the groundtruth image is
the same as its parent segment. This study defines the success

2Because of thinning of the pigmented epithelial layer above it, choroidal
vessels can appear as fragmented vessels in a retinal image.
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Fig. 9. Best case in our test suite with a success rate of 95%. (a) Vessel tree
groundtruth. (b) Result of vessel tree reconstruction. The red boxes highlight
the incorrectly classified segments due to missing traces.

rate as the percentage of correctly connected segments over
the total number of segments involved in the reconstruction
process. The total number of segments does not include the false
positive segments, such as the choroidal vessels. However, if a
true positive segment is connected to a false positive segment,
it is treated as an incorrectly connected segment.

A. Component Analysis on Vessel Grouping

To isolate the effectiveness of each major component in the
proposed tree reconstruction algorithm, this study includes the
performance analysis on four variations. These variations used
the results of LRV tracing and the results of the modified LRV,
respectively. There were 1829 segments (63718 trace points)
extracted using LRV tracing with the threshold value 2.0 as set
in [5] and 1874 segments (68 852 trace points) extracted using
the modified LRV. Given the trace results, the four variations on
tree reconstruction are as follows.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 12, DECEMBER 2012
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Fig. 10. Case of incorrect grouping due to erroneous tracing of the patho-
logical structures. (a) Original image. (b) Vessel tree groundtruth. (c¢) Red box
highlighting the area with false positive traces. (d) Blue line is the result of
incorrect grouping, whereas the thin yellow line is drawn manually to indicate
the correct grouping.

1) Grouping without the involvement of the Kalman filter
and minimum-cost matching.

2) Grouping with the Kalman filter, but without minimum-
cost matching by considering only the ungrouped seg-
ments when choosing the next segment at the junction.

3) Grouping without the Kalman filter but with minimum-
cost matching if a conflict arises at the junction.

4) Our proposed grouping method (with both the Kalman
filter and minimum-cost matching).

Table I summarizes the grouping success rates of the four vari-
ations. One can observe that the first variation yields the lowest
success rate, regardless of tracing methods. This is primarily
due to the fact that certain vessel properties (e.g., width, direc-
tion, etc.) are less reliable near junction points. For the second
variation, the Kalman filter is applied to improve the continuity
of vessel segments at bifurcation or crossover points. Conse-
quently, the success rate is improved as compared to that of the
first variation. For the third variation, minimum cost matching
is utilized as an attempt to repair incorrect tracing at junction
points. The resulting success rate is better than that of the first
variation but worse than that of the second variation. Regard-
less of tracing methods, the highest success rate is achieved by
synergetic use of the Kalman filter and minimum cost match-
ing, i.e., the fourth variation. The basic idea behind this scheme
is to perform preliminary grouping (i.e., Kalman filtering) and
then repair incorrectly grouped vessel segments (i.e., minimum
cost matching). In Table I, the results clearly demonstrate that
the addition of minimum-cost matching further improves our
previous method [6], [7], i.e., the second variation.

The efficacy of grouping also depends on the robustness of
the tracing algorithm—our modified LRV method enhanced
the grouping results by 9.43%(88.79/81.14) compared to the
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(a)

Fig. 11.
(b) Vessel tree groundtruth. (c) Result of vessel tree reconstruction.

original LRV algorithm. To qualitatively demonstrate the im-
provement over the LRV algorithm on vessel extraction,
Fig. 8(a) shows the grouping result from the original LRV trac-
ing, whereas Fig. 8(b) shows the grouping results from the im-
proved algorithm. The red circles in Fig. 8(a) indicate vessels
that were discarded by the original LRV algorithm even with the
threshold value set to 1. The reason that segments shown in the
circles are incorrectly grouped is inaccurate tracing, which turns
crossovers to bifurcations. Overall, the improved LRV tracer in-
creases the number of trace points considerably, with the major-
ity of them being true positive. The improvement here is 8.1%
(68 852/63 718) in the number of true positive trace points. The
same effect cannot be achieved by simply decreasing the thresh-
old on the LRV value, which increases false positive trace points
at a much higher rate than the true positive trace points.

Fig. 9 shows the best case, with a success rate of 95%. The
retinal image is relatively healthy with a well-defined vascu-
lature. However, the efficacy of grouping depends heavily on
the robustness of the tracing algorithm. The segments shown
in the boxes in Fig. 9(b) are incorrectly grouped due to miss-
ing traces, which turn crossovers to bifurcations (as pointed
out by the arrows). Fig. 10 shows a difficult case (low sever-
ity pathological) in which some segments are obtained from
pathological structures. The thin yellow line indicated by the
arrows in Fig. 10(d) is drawn manually to indicate the correct
grouping if tracing were performed correctly for the thin vessel.
Tracing was corrupted due to the presence of lesions near the
optic disk. Fig. 11shows the case with the lowest success rate of
75.38%. This is a case of severe myopia with visible choroidal
blood vessels. Since the vessel tracer detected both retinal and
choroidal vessels, the success rate for retinal vessel construction
can be substantially reduced if retinal vessels are accidentally
connected to the choroidal vessels.

Both LRV and tensor voting enhancement are much more
computationally expensive than grouping, since the former are
implemented as convolution with a set of templates. In vessel
grouping, the execution time is based on the number of vessel
segments found. Running on a computer with AMD Athlon
64 Processor and 2G RAM, the average execution time for a
584 x584 image is approximately 4 min for LRV vessel tracing

(b)
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Worst case in our suite, with a success rate of 75.38%. Many retinal vessels were connected to the choroidal vessels by mistake. (a) Original image.

5 10 Tvre (o)

Fig. 12.  Temporal intensity profiles of sampled points from the arterial trees,
venous trees and the background. If the intensity profile is available, it replaces
the green channel to provide better distinction between arterial and venous
vessels at crossovers.

and 2 min for tensor voting. For vessel grouping, the execution
time goes as low as 35 s for 67 vessel segments and as high as
92 s for 126 segments.

B. Generalization of the Algorithm

To generalize vessel grouping for different datasets taken un-
der different imaging conditions or with special physiological
characteristics, sample images should be used to train the system
to obtain data-dependent parameters, which are Q (the covari-
ance matrix for the system errors) and R (the covariance matrix
for the observation errors) in our system. To obtain the variances
for 6;., Gk, and dk (the nonzero diagonal elements in Q), the
traced vessel segments in the training images are used to obtain
the standard deviations of vessel tangent direction ¢, change
in vessel intensity Gy, and change in vessel width dy.. For the
DRIVE dataset, the numbers are 0.4421, 1.0122, and 1.0034,
resulting in variances of 0.2, 1 and 1, respectively. For R, the
only data-dependent element is R(5, 5) (the variance on 6y),
and it is set to the same value as Q(5, 5).

The proposed grouping method can be easily modified to take
advantage of the temporal information provided by a fluores-
cein angiogram (FA) sequence to improve tree reconstruction.
FA is a special kind of photograph often used by physicians for
treatment of vascular-related diseases, since vessels obscured by
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Fig. 13.

Sheathing of retinal artery of retinal vasculitis with nonperfusion vessels. (a) Original image. (b) Vessel tree groundtruth. (c) Result of vessel tree

reconstruction. The tip of a yellow arrow indicates the Kalman filter estimation of the next vessel point. No potential successor segment is found in the search
range, indicated as the black circle, due to either disappearance of sections of a vessel or substantial changes in width and curvature (high tortuosity).

lesions can be highlighted by the fluorescein dye. Instead of us-
ing a single green channel from the color image, the feature G is
replaced with the temporal intensity profile I = {I, I5, ..., I, }
of a trace point, where n is the number of aligned FA images® in
the sequence. Since fluorescein dye enters the ocular circulation
from arteries to veins, this accounts for the delay between arte-
rial stage phase and veneous phase [34]. As aresult, the temporal
intensity profile of an arterial trace point will increase and fade
away earlier than that of a venous trace point. This phenomenon
can be clearly observed with the representative profiles shown
in Fig. 12. This property is important for grouping at crossovers
because arterial trees only cross with venous trees.

This study includes an experiment using six FA sequences.
The dataset was obtained from the Taipei Veterans General Hos-
pital and all sequences were pathological. Each FA sequence
consists of a color retinal image and over six FA images. The
image size is 800 x 800. The results of the vascular tree recon-
struction were compared with the groundtruth images provided
by a physician. A total of 444 segments (22547 trace points) was
extracted from a suite of six sequences. If the intensity feature
is represented using only the green channel of the color image,
the average success rate is 83.11%", with a standard deviation
of 3.63%. If replacing the green channel with the intensity pro-
file from the complete FA sequence, the average success rate
is boosted up to 90.09%, and the standard deviation decreases
to 1.15%, achieving much more consistent performance. With
the fluorescein information, the likelihood of grouping an artery
with a vein, or vice versa, is substaintially reduced.

C. Comparison With an Existing Algorithm

We compared our work to [21] by Al-Diri et al., which has the
most similar goal as our work. Using the definition in [21], the
success is measured using “joining forms,” which include all the
junctions, bridges, and leave segments. For the DRIVE dataset,
Al-Diri’s method extracts 4023 joining forms, of which 1011 are
junctions/bifurcations, 2112 are bridges (including crossovers),

3This study aligns the images of an FA sequence into a common space.
The registration technique used in this study is the edge-driven dual bootstrap
iterative closest point algorithm [33].

4The average success rate for the FA dataset is lower than for the DRIVE
dataset since the FA datast contains only pathological sequences.

and 900 are leaves. The overall success rate and the success rates
for the three types of joint form are 71%, 71%, 76%, and 59%,
respectively. Our method extracts 2578 joining forms in total
with 821 junctions, 524 bridges, and 1233 leaves. The overall
success rate and the success rates for the three types of joint form
are 83%, 76%, 83%, and 88%, respectively. It is interesting to
notice that Al-Diri’s method produces far more junctions and
bridges, but much fewer leaves than our method does. One of the
reasons is that many segments which should be labeled as leaves
are incorrectly connected to other trees and each becomes part
of ajunction or a bridge using Al-Diri’s method. Another reason
for the high number in bridges by Al-Diri’s method is that more
fragmented segments are generated and connected as bridges.
Overall, our method outperforms Al-Diri’s method by 17%.

VI. DISCUSSION AND CONCLUSION

This study describes an approach that improves on an existing
vessel segmentation algorithm and performs grouping on the
extracted vessel segments to restore the topology of vascular
trees with anatomical realism. If an operator can provide the
tree type (artery/vein), trees extracted using our proposed system
can facilitate the quantification of geometrical and topological
properties of veins and arteries for the study of certainly medical
conditions, such as arteriolar narrowing and hypertension.

For vessel segmentation, both vesselness and connectedness
are exploited to maximize the completeness of vessel extraction.
For vessel grouping, the Kalman filter is adopted to ensure
continuity of vessel segments at the bifurcation and crossover
points. Minimum-cost matching is utilized to correct inaccurate
tracing of junction points. Note that the existing approaches [3],
[16]-[23] do not model the changes of vessel properties within
a vessel segment. However, this information can be used to
improve the reliability of performing tracing at vessel junctions.
Using the extended Kalman filter, it is possible to model the
continuous changes in curvature, width, and intensity of vessel
segments, and to more accurately connect those segments at
crossovers and bifurcations.

The average success rates in this study are 88.79% for
color retinal images from the DRIVE dataset and 90.09% for
pathological FA sequences. The efficacy of grouping depends
heavily on the robustness of the tracing algorithm since incorrect
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grouping is likely to occur at places where vessels are missed
or pathological structures are mistaken as vessels. Challenges
for grouping alone come from medical conditions with non-
perfusion vessels, such as sheathing of retinal artery of retinal
vasculitis (see Fig. 13(a) [35] for an example). Due to non-
perfusion resulting from blockage or inflammation, vessels can
appear disconnected and have undergone substantial changes
in width and tortuosity. Even with correct tracing, our system
is not yet capable of handling such changes since it assumes
connected vessels with continuity in geometric properties. Dis-
connected vessels can be out of the search range of one another,
and substantial changes in vessel properties can promote the
system to connect the current segment to another segment from
a different vessel with higher continuaty [see Fig. 13(c)]. In the
next phase of development, we will focus on elimination of false
vessels, which is the major reason for failure in grouping, and
proper handling of nonperfusion vessls to improve the clinical
usability of the system.
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