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Abstract

In this paper, we present a method to automatically

extract the vessel segments and construct the vascular tree

with anatomical realism from a color retinal image. The

significance of the work is to assist in clinical studies of

diagnosis of cardio-vascular diseases, such as hyperten-

sion, which manifest abnormalities in either venous and/or

arterial vascular systems. To maximize the completeness

of vessel extraction, we introduce vessel connectiveness

measure to improve on an existing algorithm which applies

multiscale matched filtering and vessel likelihood measure.

Vessel segments are grouped using extended Kalman filter

to take into consideration continuities in curvature, width,

and color changes at the bifurcation or crossover point. The

algorithm is tested on five images from the DRIVE database,

a mixture of normal and pathological images, and the results

are compared with the groundtruth images provided by a

physician. The preliminary results show that our method

reaches an average success rate of 92.1%.

1. Introduction

Realization of the high-level organization of the vascu-
lar trees plays an important role in a variety of medical
diagnosis. It provides valuable information for the physi-
cians to perform surgical planning and outcome assessment,
and to monitor the progression of vascular diseases [23].
In cardiology, with the complete map of the vascular
trees, the neurosurgeons and radiologists can make the
best decision about vessel occlusion for stroke prevention
that ensure collateral flow provided by other parts of the
circulation [18]. In ophthalmology, measurements specific
to the arterial vascular trees can provide early diagnosis
of certain cardiavascular diseases. Clinical studies suggest
that narrowing of the arterial blood vessels in the retina
may be an early indicator of hypertension [26], [3] and
atherosclerosis, which is a process of inflammation in the
vessel wall leading to plaque formation and a reduction in
arterial flexibility [10]. To quantify the severity of arteio-
lar narrowing, measurements can be drawn by comparing

morphological characteristics of the arterial trees to the
venous trees by measuring the changes of the arteriolar-
to-venular diameter ratio, changes of the branching angles,
and reduction of microvascular densities [11], [20], [25]. In
terms of retinal image analysis, important features, such as
the optic disk and macula, can be automatically located using
the vascular trees. This is crucial for diagnosis of diseases
such as macular degeneration—drusens close to the macular
need immediate attention, whereas drusens on the periphery
might need to be monitored only. Thus, a reliable method
for vascular tree construction and quantification would be
beneficial in medical diagnoses.

There is a rich body of literature on extraction of tubular
structures in medical images, but the focus has mostly been
on identification of vessel pixels [9], [12], [15], and segmen-
tation of vessel segments [1], [17], [22], not delineation of
the vascular network as a whole with a tree structure. Two
major approaches for construction of vascular trees can be
found in the literature. One approach is to grow either the
vascular regions, which are later transformed into vascular
trees [21], [27], or the skeletons directly [8], [16], starting
from some seed points. The other approach is to build
the trees from detected vessel segments using techniques
of perceptual grouping [2], [4], [5], [6], [13]. We refer to
the former as ”growing-based” method and the latter as
”grouping-based” method.

For growing-based methods, Selle et al. [21] segment
vessels using a threshold-based region-growing method, with
the threshold value automatically generated. The segmented
vascular structure is skeletonized, and transformed into a
vascular ”forest”, which contains a number of directed
acyclic graphs, using a graph theoretical method. A similar
approach is done by Yim et al. [27]. The tree is generated
by Ordered Region Growing (ORG) technique. A seed
is provided at the root of the tree. The growth, started
from a user-defined point, is in the direction of higher
intensity. The result of ORG is a graph. However, it is not
clear how the ramifications are handled. Following ORG is
either skeletonization or pruning. Instead of extracting the
vascular regions, Haris et al. [8] and Liu et al. [16] perform
tracing of the vessel centerlines. In [8], [16], the tree is
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constructed as the vessels are being traced. Starting from
a seed point, vessel pixels are found recursively along the
vessel centerline. Ramifications are handled in a breadth-
first-search manner.

For grouping-based methods, Jomier et al. [13] and Bullitt
et al. [2] both perform grouping of vessel segments to
form a minimum spanning tree, but with different mini-
mization criteria. [13] minimizes the Mahalanobis distance
of features defined at each junction, while [2] performs the
minimization based on linear distance and image intensity in
suspected regions of connection. Coppini et al. [4] propose
a bottom-up coronary artery extraction method based on
the angiogram edges. These edges are grouped into edge
segments, which are organized to bar primitives and, finally,
bars are linked to form artery segments. The algorithm
developed by Deschamps et al. [5], [6] first converts the
vascular image to a threshold ”vessel potential” image
and perform perceptual grouping and contour completion.
Contours are found as minimal paths between connected
components, using the fast marching algorithm.

A common problem with aforementioned works in the
literature is lack of anatomical realism that reflects the true
topologies of the vascular trees. In retinal images vessels are
organized in trees with roots inside the optic disc. This is
the region where arteries and veins enter the retinal surface.
Following the main arteries and veins, vessels branch out
until capillaries (the thinnest retinal vessels) are reached.
However, vascular tree construction from retinal images
poses several challenges:

1) Some vessels are partially traced and the traced seg-
ments are not attached to the segment of the vessel
from which it branches out. Such segments are often
found near the optic disk.

2) A vessel with central reflex can be mistaken as two
parallel vessels. Such a vessel is brighter in the center
and darker at the boundaries, appearing as a hollow
vessel. The opposite occurs as well—two nearby par-
allel vessels being treated as one vessel.

3) A vessel is incorrectly placed between two patholog-
ical structures of higher intensity.

4) Crossovers are turned into branching points, due to
incomplete tracing of some vessels.

In this paper, we present a method that improves on an
existing vessel segmentation algorithm proposed by Sofka
et al. [22] for retinal images and performs grouping on the
extracted vessel segments to achieve anatomical realism of
the vascular trees. This allows quantification of geometrical
and topological properties of veins and arteries. For ves-
sel segmentation, both vesselness and connectiveness are
exploited to maximize the completeness of extraction of
vessel segments. For grouping, Kalman filter is adopted
to ensure continuity of vessel segments at the bifurcation
or crossover point by taking into account the variations in

width, curvature, and intensity along the current segment.
The algorithm is tested and validated using a subset of
images from the DRIVE dataset.

2. Vessel Segmentation

Our vessel extraction algorithm improves upon the al-
gorithm by sofka [22], which determines the vesselness
of a pixel based on a likelihood ratio test that combines
matched filter responses, confidence measures and vessel
boundary measures. Matched filter responses are derived in
scale-space to extract vessels of widely varying widths. A
vessel confidence measure is defined as a projection of a
vector formed from a normalized pixel neighborhood onto
a normalized ideal vessel profile. Vessel boundary mea-
sures and associated confidences are computed at potential
vessel boundaries. Combined, these responses form a 6-
dimensional measurement vector at each pixel. A learning
technique is applied to map this vector to a likelihood ratio
that measures the likelihood ratio vesselness (LRV) at each
pixel.

Potential problems with LRV tracing include missing seed
points for small vessels and determination of the threshold
value in pruning. To mitigate both problems, we made
few enhancements to LRV tracing to include detection of
junction points for placement of extra seed points and
combination of vesselness and connectiveness for pruning to
alleviate the dependence of a single threshold value on LRV.
Both enhancements are implemented using the technique of
tensor voting [7] to determine whether a pixel is likely to
be on a junction or a curve.

When tensor voting is performed, each pixel sends its
tensor to its neighbor pixels through its voting field. The
result of voting at each pixel is a variance-covariance matrix
which is decomposed into the eigenvalues and eigenvectors.
Let λmin and λmax be the minimum and maximum eigen-
values, respectively. A pixel is on a curve structure if its
λmax is substantially larger than λmin, whereas a pixel is
on a junction of two or more curves if both eigenvalues are
similar. In other words, λmax provides a good indication
that a pixel is on a continuous structure, such as a curve, and
serves as a measure of connectiveness of the pixel with its
neighboring pixels, whereas λmin provides the saliency for
junctions. Both connectiveness and junction saliency maps
are obtained from the LRV image, instead of the original
image, since the former excludes non-vessel structures with
well-defined boundaries, such as the optic disk.

To maximize the likelihood that at least a seed point is
found on every vessel, we include both the seed points
defined by the LRV tracer and also points near vessel
junctions as tracing progresses. The motivation to adopt the
latter is rather intuitive, since blood vessels are naturally
connected and if the parent vessel has been traced, the
vessels that branch out of it are less likely to be missed if
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seeds are placed near the junctions. To enable identification
of a junction before all vessels that come to meet are
extracted, we detect potential junction locations using the
junction saliency map.

Trade-off has to be made between false positive and false
negative rates if pruning of the over-traced result uses only
a single threshold value on the LRV. Reducing the threshold
value increases both the true and false positives. To improve
the robustness of pruning, we consider both vesselness and
connectiveness measures of a pixel—points with high con-
nectiveness are likely to be on a continuous structure, such
as a vessel, even if the vesselness measure falls below the
threshold value. Given traces produced by the matched filter,
trace points of each trace are re-visited consecutively, and
the vesselness and connectiveness measures are examined.
If the former is below the threshold, the pixel, as well as
the remaining ones in the trace, is discarded if (1) it is one
of the first 3 trace points, (2) previous 2 trace points have
low vesselness measures, or (3) the connectiveness is below
a threshold, determined adaptively for each image.

At a crossover, it is possible that the vessel tracer follows
a vessel which is not anatomically connected to its current
one. As a result, the extracted vessel segment may contain
segments from different blood vessels when tracing termi-
nates. Before grouping of the vessel segments for vessel tree
construction, every vessel segment is broken up into shorter
pieces at junctions with other vessel segments to ensure that
the basic components for grouping are segments that each
contains only points from the same blood vessel.

3. Vessel Grouping

Taking the set of vessel segments from the segmentation
algorithm, the grouping algorithm connects the segments to
restore the topology of a vascaular tree that bears anatomical
realism. Figure 1 presents the overview of the grouping
algorithm. The segments are dynamically ranked so that
a segment of the highest priority category can be chosen
to initiate the grouping process of a vessel. Ungrouped
segments which intersect with the boundary of the optic
disc (chosen manually) are assigned the first priority, and
the set of segments each being part of a bifurcation and
close to a vessel already grouped (being part of a constructed
tree already) is assigned the second priority. To connect
the segments to form a vessel, the process starts from an
ungrouped segment with the highest priority, and iterates two
steps: (1) iteratively correcting and learning the continuity
pattern of the current segment using the extended Kalman
filter and (2) picking the next segment with the highest
continuity in the neighborhood of the end point of the
current segment. If the next segment cannot be located, the
process terminates for the current vessel, and the priorities
of the remaining ungrouped segments are updated. The tree
construction process terminates when no segment of first

Figure 1. The flow chart of perceptual grouping pro-
cess.

or second priority can be found. Constructed vessels that
originate from bifurcation points are each connected to the
vessel that it branches out to form a vessel tree, and the final
result is a set of trees with the root segments intersecting
with the boundary of the optic disk.

3.1. Training of Extended Kalman Filter

To connect two segments of a vessel, three continuity
properties are imposed along a vessel: (a) the vessel direction
varies constantly, (b) the lumen width varies constantly,
(c) and the color intensity varies relatively constantly. An
extended Kalman Filter is adopted to learn the characteristics
of a vessel segment to ensure best continuity when choosing
for the next segment for grouping. Each trace point pk is as-
sociated with a 6-tuple, state vector Xk = (x, y, G, d, θ, ġ),
where x and y form the coordinate, G is the color intensity,
d is the width, θ is the tangent direction of the vessel
at pk, and ġ is the change in the color intensity. At pk,
the nonlinear system model function and the observation
function are defined as

Xk = fk−1(Xk−1) + wk−1 (1)

Xo
k = Xk + vk (2)

where Xk−1,Xk are state vectors at pk−1 and pk, respec-
tively. fk is nonlinear functions as the following:

xk = xk−1 + dk−1 × cos θk−1 (3)

yk = yk−1 + dk−1 × sin θk−1 (4)

Gk = Gk−1 + ġk−1 (5)

dk = dk−1 (6)

θk = θk−1 (7)

ġk = ġk−1 (8)
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Xo
k

is the observation vector at pk. In our application, Xo
k

comes from the vessel tracer. wk and vk are the system noise
and the observation noise, respectively. They encapsulate
system errors which mainly come from the unpredictable
vessel direction perturbation and the quantization error as
the actual coordinates of centerline midpoint are discretized
into integral number of pixels in the image.

The Kalman theory gives the equations for the optimal
estimate X̂k|k−1 given the statistics of the system and

observation noise wk−1 from X̂k−1|k−1. The prediction and
correction functions are defined as

X̂k|k−1 = fk−1(X̂k−1|k−1) (9)

X̂k|k = X̂k|k−1 + Kk × (Xo
k − X̂k|k−1) (10)

where the predict phase uses the previous state estimate
X̂k−1|k−1 to produce an estimate of the current state,

X̂k|k−1. In the correction phase, measurement information
at the current pk, Xo

k
, is used to refine this prediction to

arrive at a more accurate state estimate, X̂k|k. The Kalman
gain Kk, covariances of the state and measurement noise
are estimated directly from the data. For more details about
Kalman filter, we refer the reader to the book written by
Kay [14].

3.2. Grouping by Kalman Filter

As the Kalman filter reaches the end of a vessel segment,
Xo

k
is chose from the segments that come to meet at this

junction, and the segment in which Xo
k

resides is the one to
be connected to the current segment. Xo

k
is the state vector

of the first trace point of the neighboring segment with the
minimum Mahalanobis distance defined as:

d(X̂k|k−1,X
o
k) =

√

(X̂k|k−1 − Xo
k
)Σ−1(X̂k|k−1 − Xo

k
)

(11)
where Σ is the diagonal covariance matrix of the estimated
point X̂. The corrected state vector X̂k|k becomes the first
state vector of the new segment. The grouping process for
the current vessel terminates if no ungrouped segment is
found near the end point of the current segment.

4. Experimental Analysis

The preliminary testing result is obtained from a test suite
of five images, three relatively normal and two pathological,
from the DRIVE database [24]. Images were acquired using
a Canon CR6 nonmydriatic 3CCD camera at a 45 field-
of-view and are 24-bit color at a resolution of 768×584
(the fundus occupies a circle of diameter approximately 540
pixels about 50% of the image). The results of vascular tree
construction are compared with the groundtruth images pro-
vided by a physician. An example is shown in Figure 3(a).
Each vascular tree originating from the optic disk is assigned
a unique non-white color. An area is painted white if more
than one vessel passes through it.

(b) (a)

Figure 2. Improvement on vessel extraction over the
original LRV algorithm. (a) The result of LRV tracing with
the threshold value 2.0 as set in [22]. (b) The result of
our improved tracing algorithm with more seed points
near vessel junctions and more robust scheme for trace
point selection.

4.1. Evaluation for Vessel Extraction

Since the focus of the work is on the correctness of
the tree construction, we only demonstrate qualitatively the
improvement over the LRV algorithm on vessel extraction
without doing a rigorous comparison using the entire DRIVE
database. Figure 2(a) shows the result by the original
LRV tracing, whereas Figure 2(b) is the results from our
improved algorithm. The rectangles indicate vessels which
are discarded by the original LRV algorithm even with
the threshold value set to 1. Overall, our improved LRV
tracer increases the number of traces considerably, with the
majority of them being true positive. The same effect cannot
be achieved by simply decreasing the threshold on the LRV
value, which increases both true and false positive traces.

4.2. Evaluation for Vascular Tree Construction

To validate the correctness of the tree construction, we
compare our result against the groundtruth. A segment is
correctly connected to its parent segment if its color in the
groundtruth image is the same as its parent segment. The
success rate is defined as the percentage of correctly con-
nected segments over the total number of segments involved
in the construction process. The total number of segments
does not include the false positive segments. However, if
a true positive segments is connected to a false positive
segment, it is treated as an incorrectly connected segment.

There is a total of 484 segments extracted. Our prelim-
inary result shows an average success rate of 92.1% for
vessel grouping (see table 1). The best case with a success
rate of 95% is shown in Figure 3. The retinal image is
relatively healthy with a well-defined vasculature. However,
the efficacy of grouping depends heavily on the robustness
of the tracing algorithm. The reason that segments shown in
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(a) (b)

Figure 3. The best case in our test suite with a success
rate of 95%. (a) The vessel tree groundtruth. (b) The re-
sult of vessel tree construction. The red boxes highlight
the incorrectly classified segments.

the boxes in Figure 3 are incorrectly grouped is failure in
tracing, which turns a crossover to bifurcation as pointed
out by the arrows. The lowest success rate is 89.8%—
many segments are obtained from pathological structures,
shown in Figure 4(c). In Figure 4(d), the thin yellow line is
drawn manually to indicate the correct grouping if tracing
were performed correctly for the thin vessel. In addition to
missing vessel segments, the end section of the vessel is
grouped to a false segment from a lesion (top portion of the
blue line), instead of the white segment pointed to by the
red arrows.

Table 1. Success rates for 5 retinal images from the
DRIVE database. The overall success rate for the 5

images is 92.1% (484/446)

Image Number of Correctly Success
segments connected rate

No.1 120 114 95.0%

No.2 114 103 90.4%

No.4 80 76 95.0%

No.11 88 79 89.8%

No.26 82 74 90.2%

5. Discussion and Conclusion

We have presented a method which improves on an
existing vessel segmentation algorithm proposed by Sofka et
al. and performs grouping on the extracted vessel segments
to achieve anatomical realism of the vascular trees. For
vessel segmentation, both vesselness and connectiveness are
exploited to maximize the completeness of vessel extraction.
For vessel grouping, Kalman filter is adopted to ensure conti-
nuity of vessel segments at the bifurcation or crossover point
by taking into account the variations in width, curvature, and
intensity along the current segment. The main advantages
are the abilities to track and measure complete vessel trees.

(a) (b)

(c) (d)

Figure 4. The worst case in our test suite with a success
rate of 89.8%. Many segments are incorrectly placed in
pathological structures. (a) The original image. (b) The
vessel tree groundtruth. (c) The red box highlighting the
area with false positive traces. (d) The blue line is the
result of incorrect grouping, whereas the thin yellow line
is drawn manually to indicate the correct grouping.

The system achieves an average success rate of 92.1% in
the preliminary study. With the tree type (artery/vein) pro-
vided by an operator, extracted trees allow quantification of
geometrical and topological properties of veins and arteries.
One such measure is the arteriolar-to-venous (A/V) ratio of
the retinal vasculature, which is an important index for end-
organ damage in patients with hypertension [19].

The algorithm in its present state is still prone to failure
in areas where pathological structures are present (see Fig-
ure 4(c))—vessels may be connected to pathological struc-
tures. Furthermore, efficacy of grouping depends heavily
on the robustness of the tracing algorithm since incorrect
grouping is likely to occur at places where vessels are
insufficiently traced (see Figure 3). In the next phase of
development, we will focus on the correctness of grouping,
instead of robustness of tracing, and improve the clinical
usability of the system. The idea is to adopt a learning-
based approach in which the system learns the error patterns
from the physician in the validation process. With the
learning capability, the confidence and prominence measures
of the connections of the vessel segments can be corrected
adaptive, which in turn assist the physician in the validation
process so that connections with low confidence and high
prominence can receive early attention.
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