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A method and system for evaluating probabilistic boosting
trees is disclosed. In an embodiment, input data is received at
a graphics processing unit. A weighted empirical distribution
associated with each node of the probabilistic boosting tree is
determined using a stack implementation. The weighted
empirical distribution associated with each node is added to a
total posterior distribution value.
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Rlgorithm 1: PbtPosterior
Data: N node of the tree

Data: L=Ieft(N), R=right(N)

Result: py(tl|x) the posterior probability for tree 20
rooted at N

if Leaf(N) then return qN(+1);

p = Gyltllx); <2

if p > (l-e;) then return PbtPosterior(R);
else if p< €1 then return PbtPosterior(l);
else if p > 0.5 1 ¢, then

| return (1-p)g; (+1) + pPbtPosterior (R)
else if p <0.5 - e, then

| return (1-p)PbtPosterior (L)+p qR(+1)

else
| return (1-p)PbtPosterior(L)+p PhtPosterior (R)

FIG. 2
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Algorithm 2: PbtPosteriorStackBased
Data: N node of the tree
Result: p(+1]X) the posterior of the tree<"310
S = {<root,1.0>};
total «0
while || S || # 0 do <30
<Nyw> = pop(S);<<r”308
if isLeaf(N) then

total « total + i * gy(+1); <"

cgntinue;
p & qyltl)); —
ifp> (1—e1) then
| S.push (<raght (N}, w>)
else if p < ¢; then
| S.push (<left (N),w>)
else 1f p > 0.5 + &) then
L= left(N); 312
total = total + w *(l-p)qz(+1);
| S.push(<right(¥),w * p>);
else if p < 0.5-¢) then
R=1eft (M),
total=total + w * p *gp(tl);
| s.push (<Left (N}, w *(1-p)>)
else
/] Descend down both nodes :
S.push (<right (N), w * p>);
| S.push(<left(N), w *({1-p)>)

return total;

FIG. 3
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template<float feature func(float3 pixel,
float nx,
float ny)>

_ device  float

pbt evaluate tree(const float3é pixel) |

floatd stack [kMaxQueueSizel:
int numInStack = 1;

// Insert root (& 0,0) with weight 1.

while (numInStack>0)
___numInQueue;
floatd node = stack[numInQueue];
float prob =
pbt eval classifier
<feature func>(pizel, node.x, node.y);
if (prob > 1.0 - el)

FIG. 6
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floatd numCubes = texlD(texPBT,x,y);
for (int 1=0; 1<numCubes.x; 1t4) {
floatd cubemin = texZD(PBT,x,yt2*1t1);

floatd cubemax = texZD(PBT,x,yt2*1t2);

val += cubemin.w *

haar eval cube(cubmintpos,
| ~ cubemaxtpos);

return val;

FIG. 9
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float sf eval(floatd p, floatd d, int type) {
floatval; <1102

int flags = flagTableShared[type];

// Extract data —
if (flags & Norm) {
p.x =, val = dotd(p, p);

else if (flags & Projection) {
p.x =0, val = dotd(d, p);

|

else if (glags & Angle) {
p.x = 0;
float 1 = max(le-10, sqrtidotd(p. p))i; <1

val = acos(m1n(1 0,
max(-1.0, dot4(d, p)/1))};

)

else if (flags & NormalDistance) {
p.x = (; float proj= dot4(d Pl
val = dot41p, D)- proj * proj;

else val = dot4 (component [type], p); |

// Transform the pixel.

if (flags & Absolute) value = fabsf(val); 106
if (flags & Log) val = log(maz(le-3, val)); e
else val = pow(val, powTable[type];
return val;

FIG. 11
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METHOD AND SYSTEM FOR EVALUATION
USING PROBABILISTIC BOOSTING TREES

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 61/385,240, filed Sep. 22, 2010, and
U.S. Provisional Application No. 61/424,715, filed Dec. 20,
2010, the disclosures of which are herein incorporated by
reference. This application is related to U.S. application Ser.
No. 12/180,696, filed Jul. 28, 2008, and issued Apr. 20, 2010
as U.S. Pat. No. 7,702,596, and U.S. application Ser. No.
12/248,536, filed Oct. 9, 2008.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to evaluation of data
using probabilistic boosting trees.

[0003] Discriminative classifiers are often a bottleneck in
3D pose detection routines. Tree-based classifiers, such as
Probabilistic Boosting Trees (PBT) and Random Forests, are
discriminative models used for vision-based classification
and object detection. The classifier is typically evaluated at
every pixel in an image, which can be inefficient. The PBT is
a general type of decision tree that uses strong classifiers to
make fuzzy decisions at internal nodes. Generally, using PBT
requires multiple recursive calls, which slows down object
detection.

[0004] Efficiency can be improved using hierarchical meth-
ods or cascades, but 3D medical applications and real-time
applications require further efficiency improvements.

BRIEF SUMMARY OF THE INVENTION

[0005] The present invention provides a method and system
for evaluation of probabilistic boosting trees. In an embodi-
ment, input data is received at a graphics processing unit. A
weighted empirical distribution associated with each node of
the probabilistic boosting tree is determined using a stack
implementation. The weighted empirical distribution associ-
ated with each node is added to a total posterior distribution
value.

[0006] Inanembodiment, posterior distribution of a proba-
bilistic boosting tree is determined by determining a weighted
empirical distribution associated with each node of the proba-
bilistic tree using a stack implementation, and adding the
weighted empirical distribution associated with each node to
a total posterior distribution value. A root node of the proba-
bilistic boosting tree is pushed onto a stack and then is deter-
mined whether to descend thru a node in a left sub-tree or a
node in a right sub-tree.

[0007] Inan embodiment, a discriminative classifier of the
root node is determined. Based on the discriminative classi-
fier satisfying certain conditions, a left node, a right node, or
both the left node and the right node of the root node are
descended. Descending a node comprises determining a dis-
criminative classifier of that node. If the discriminative clas-
sifier is a leaf node, the weighted empirical distribution of the
node is added to the total posterior value. Otherwise, the node
is pushed onto a stack and the left node, right node, or both the
left and the right node of the node are descended.

[0008] Inanembodiment, the probabilistic tree is evaluated
using a parallel computing architecture. The parallel comput-
ing architecture may be Compute Unified Device Architec-
ture (CUDA). The stack may be associated with one of a
plurality of threads running in parallel.
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[0009] In an embodiment, a method and system for evalu-
ating a forest of probabilistic boosting trees is disclosed. Input
data is received at a graphics processing unit. The plurality of
probabilistic boosting trees is evaluated using a stack imple-
mentation. A combined posterior distribution based on a pos-
terior distribution of each of the plurality of probabilistic
boosting trees is generated.

[0010] These and other advantages of the invention will be
apparent to those of ordinary skill in the art by reference to the
following detailed description and the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 illustrates a method for training a probabilis-
tic boosting tree (PBT), in accordance with an embodiment of
the present invention;

[0012] FIG. 2 shows pseudocode for determining the pos-
terior value of a node of a PBT using recursion;

[0013] FIG. 3 shows pseudocode for determining the pos-
terior value of a node of a PBT using a stack implementation
according to an embodiment of the present invention;
[0014] FIG. 4 illustrates a method for determining the pos-
terior distribution of a node of a probabilistic boosting tree, in
accordance with an embodiment of the present invention;
[0015] FIG. 5 illustrates an exemplary PBT data structure
that is arranged into a texture image;

[0016] FIG. 6 illustrates an exemplary Compute Unified
Data Architecture (CUDA) stack-based implementation of
evaluating a PBT, in accordance with an embodiment of the
present invention;

[0017] FIG. 7 illustrates exemplary cubes showing Haar
feature types, in accordance with an embodiment of the
present invention;

[0018] FIG. 8 illustrates a histogram classifier and feature
data packed into a single column of a texture image, in accor-
dance with an embodiment of the present invention;

[0019] FIG. 9 shows an exemplary CUDA algorithm for
implementing feature computation, in accordance with an
embodiment of the present invention;

[0020] FIG. 10 shows a table of specific steerable features
used, in accordance with an embodiment of the present inven-
tion;

[0021] FIG. 11 shows an algorithm for implementation in
CUDA for steerable feature evaluation, in accordance with an
embodiment of the present invention;

[0022] FIG. 12 shows a CUDA implementation integrated
into an existing software library, in accordance with an
embodiment of the present invention;

[0023] FIG. 13 illustrates a method for evaluating a forest
of'probabilistic boosting trees, in accordance with an embodi-
ment of the present invention;

[0024] FIG. 14 illustrates a graph showing execution times
when threads evaluate different classifiers and when thread-
blocks evaluate different classifiers, in accordance with an
embodiment of the present invention;

[0025] FIG. 15 illustrates total detection time, central pro-
cessing unit (CPU) execution time, and wait time for a graph-
ics processing unit (GPU), in accordance with an embodi-
ment of the present invention;

[0026] FIG. 16 illustrates speedup comparisons for small
volumes and medium volumes, in accordance with an
embodiment of the present invention; and
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[0027] FIG. 17 is a high level block diagram of a computer
capable of implementing the present invention.

DETAILED DESCRIPTION

[0028] The present invention is directed to a method and
system for evaluation of probabilistic boosting trees.
Embodiments of the present invention are described herein to
give a visual understanding of the method for evaluation of
probabilistic boosting trees. A digital image is often com-
posed of digital representations of one or more objects (or
shapes). The digital representation of an object is often
described herein in terms of identifying and manipulating the
objects. Such manipulations are virtual manipulations
accomplished in the memory or other circuitry/hardware of a
computer system. Accordingly, it is to be understood that
embodiments of the present invention may be performed
within a computer system using data stored within the com-
puter system.

[0029] FIG.1 illustrates a method for training a probabilis-
tic boosting tree (PBT), according to an embodiment of the
present invention. FIG. 1 more specifically describes accel-
erated training of a probabilistic boosting tree using a graph-
ics processing unit (GPU).

[0030] At step 102, training data is received. The training
data may be annotated training data including images having
annotations representing locations of landmarks of objects in
the image. The training data may consist of images having
annotations representing locations of landmarks of objects in
the image. Training data can be medical image data such as
computerized tomography (CT), magnetic resonance imag-
ing (MRI), X-ray, or Ultrasound image data.

[0031] A PBT models the posterior distribution of a data
set. In training a PBT, the aim is to enable the use of the PBT
as a discriminative model for classification and detection of
an object in image data. A PBT is a binary decision tree with
a fuzzy decision taken at each internal node of the tree
depending on the output of the node’s strong classifiers. The
posterior value of any given individual node is determined by
combining the posterior values of its child nodes using a
weighted distribution. Weights used in the determination are
determined by evaluating a node’s strong (learned) classifier,
AMyIx).

[0032] Eachnode N contains a strong classifier, §(yIx), and
the empirical distribution of its leaf nodes q,/(y), where ye{-
1,+1}, and x is an input point. The strong classifier can be any
classifier that uses a problem specific feature. For example, an
AdaBoost classifier can be used, which combines several
binary weak classifiers to produce a strong estimate.

[0033] At step 104, the training data is divided into a first
data set and a second data set by a classifier. The classifier that
divides the training data is a strong (learned) classifier asso-
ciated with the top parent node of the PBT.

[0034] Atstep 106, a first sub-tree and a second sub-tree are
trained. The first data set is used to train a first sub-tree of the
parent node and the second data set is used to train a second
sub-tree of the parent node. A classifier at each node of the
PBT is trained using a feature matrix.

[0035] During training of a PBT, the PBT is constructed
using a set of positive and negative examples, which may
originate from different 3D images. Each node of the PBT
includes a strong classifier, such as the AdaBoost classifier,
which may be trained for that particular node. A feature
matrix is computed (e.g., every possible feature is evaluated
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for every input sample), and then each of the weak classifiers
that constitute the strong classifier is trained using the feature
matrix.

[0036] Using the feature matrix, the weak classifiers of the
strong classifier may be trained sequentially by choosing each
weak classifier using a greedy algorithm by considering how
well each feature acts as a classifier. The algorithm for choos-
ing the weak classifier during training includes three passes.
First, feature bounds must be computed. Afterwards, a feature
value is mapped to each sample within a histogram bin. Then,
the histogram bins are incremented. Each sample may then be
sampled with the trained classifier to compute an error. All of
the aforementioned steps may be performed on a GPU. The
operations for a classifier are independent, so each weak
classifier can be trained by a different thread. The feature
matrix column indexes the feature type, while the row indexes
the sample. Each thread processes a single column.

[0037] The feature matrix is stored as a single component
floating-point texture. The input is then split up into several
textures of a maximum width and processed in chunks.
Through CUDA texture limits, the restriction is a maximum
width of 32768/sizeof(float)=8192. The feature data stays on
the GPU for each of the weak training classifier passes. For
each pass, the weights of the samples are updated.

[0038] Returning to FIG. 1, at step 108, a trained posterior
distribution model of the PBT is generated based on the
feature matrices of each node. The posterior distribution
model represents a set of classifications that may be used for
object classification and object detection. The set of classifi-
cations from the posterior distribution model of the PBT may
beused thereafter by a detector to perform detection on image
data. For example, the trained tree can be used to estimate the
posterior probability of unseen data using a stack implemen-
tation on a GPU, as discussed in further detail in the following
paragraphs.

[0039] The data parallel nature of evaluation using the PBT
means that it is advantageous to utilize the computation
power of a GPU instead of a central processing unit (CPU).
Thus, in order to implement evaluation of a PBT on a GPU,
multiple recursive calls, which are used in a traditional evalu-
ation of a PBT may be replaced using a stack-based imple-
mentation. Cached texture memory is used to represent fea-
tures and tree data structures. Since GPUs do not support
recursive calls, the stack-based implementation is necessary
to remove recursion.

[0040] For comparison, FIG. 2 shows pseudocode for
determining the posterior value of a node of a PBT using
recursion. FIG. 3 shows pseudocode for determining the pos-
terior value of a node of a PBT using a stack implementation
according to an embodiment of the present invention.

[0041] The posterior probability of a node, is recursively
computed as a weighted combination of the posterior prob-
abilities of the child nodes, referenced by reference numeral
204. The weight factor of this combination is determined by
evaluating the node’s strong classifier, referenced by refer-
ence numeral 202. The recursion terminates at leaf nodes of
the tree (i.e., nodes with no child nodes), which simply return
their empirical distribution q,, (+1). The final result, or pos-
terior distribution for each node is a sum of weighted empiri-
cal distributions of the child nodes, represented by a result
referenced by reference numeral 206. The total weight given
to any node’s empirical distribution is the product of the
weights associated with the path from the root to the node.



US 2012/0069003 A1

[0042] The algorithm for using a stack implementation is
shown in FIG. 3. As illustrated in FIG. 3, a stack holds a list of
to-be traversed nodes and their respective weights. When a
leafnode is visited, the empirical distribution of that leaf node
with its weight is added to a total empirical distribution of the
root node, represented by reference numeral 302.

[0043] The root node and corresponding weight is first
pushed into a stack. Each node in the stack is then processed
sequentially, represented by reference numeral 306. If the
node is a leaf node, the empirical distribution of the node is
weighted by the corresponding weight and accumulated into
the total posterior of the tree, represented by reference
numeral 302. If a particular node has child nodes, then either
the left or right child nodes are placed into the stack with
weights that are the product of the parent node’s weight and a
factor dependent on the value of the parent node’s strong
classifier, represented by reference numeral 312. The empiri-
cal distribution of child nodes that are not pushed on the stack
is weighted and accumulated to the total posterior distribution
of the tree. The weight is proportional to the weight of the
parent node and the value of the strong classifier evaluated at
the parent. The sum of all of these products represents the
total posterior distribution model for the PBT, represented by
reference numeral 310.

[0044] FIG. 4 illustrates a method for determining the pos-
terior distribution of a node of a probabilistic boosting tree
using a GPU, in accordance with an embodiment of the
present invention.

[0045] At step 402, input data is received at a GPU. Input
data may be a 2D image or a 3D volume received from an
image acquisition device. The 3D volume can be a C-arm CT
volume, computed tomography (CT) volume, magnetic reso-
nance imaging (MRI) volume, etc. The 3D volume can be
received from an image acquisition device, such as a C-arm
image acquisition system, or can be a previously stored vol-
ume loaded from memory or storage of a computer system, or
some other computer readable medium.

[0046] At step 404, a weighted empirical distribution asso-
ciated with each node of the probabilistic boosting tree is
determined using a stack implementation. The posterior prob-
ability p(ylx) is determined using the principles described
above with a stack implementation. Specifically, a root node
of the probabilistic boosting tree is first pushed onto a stack.
Then a determination is made whether to descend down the
PBT thru a node in a left sub-tree or thru a node in a right
sub-tree.

[0047] In determining whether to descend down a node, a
discriminative classifier of the root node is first determined. If
the discriminative classifier of the root node satisfies a first
condition signitying that a left node must be descended, then
the method proceeds to descend down a left node in the left
sub-tree. If the discriminative classifier of the root node sat-
isfies a second condition signifying that a right node must be
descended, then the method proceeds to descend down a right
node in the left sub-tree. If the discriminative classifier of the
root node satisfies a third condition, then the method descends
down both the aforementioned left node and the aforemen-
tioned right node.

[0048] After descending into a node, the discriminative
classifier of that node is determined. If the node is determined
to be a leaf node, then the weighted empirical distribution of
that node is added to a total posterior distribution value. If the
node satisfies the first condition, then the node will be pushed
onto the stack, and the left child node of the node will be
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descended. If the node satisfies the second condition, then the
node will be pushed onto the stack, and the right child node of
the node will be descended. If the node satisfies the third
condition, then the node is pushed onto the stack, and both the
left and right child nodes are descended.

[0049] At step 406, the weighted empirical distribution of
each node of the probabilistic boosting tree is added to the
total posterior distribution value. The total posterior distribu-
tion represents a posterior distribution model that can be used
in the detection of objects or landmarks in 2D images or 3D
volumes.

[0050] In an advantageous embodiment, the above
described method for evaluating a PBT can be implemented
using a Compute Unified Device Architecture (CUDA) pro-
gramming model. In the CUDA programming model, a par-
allel problem is decomposed into a grid of treaded blocks,
with each block containing many threads. Blocks are
assigned to the GPU’s streaming multi-processors, which
breaks down the block and schedules it in groups of 32
threads. In detection or classification, the grid of thread
blocks will overly the input space (e.g., all pixels in the
volume), and each thread will evaluate the classifier for a
different pixel in the volume or a different orientation/scale
hypothesis.

[0051] The programming model exposes the memory
architecture, which includes a 16 kb low-latency shared
memory (accessible from threads within the same block),
high-latency local memory (per-thread), global memories
(accessible by all threads), and cached global accesses
through texture memory. Designing the algorithm to use these
memory types appropriately is key to efficiency.

[0052] Ona GPU implementation of evaluating a probabi-
listic boosting tree, several threads will descend the tree in
parallel. Thus, neighboring threads may access the tree data
structure in different regions, so placing the tree structure in
global memory may cause slow uncoalesced memory access.
However, since the tree data structure is too large to fit entirely
in a 16 kb shared memory, the tree data structure may be
packed into a texture image. Instead of node pointers, 2D
location indices that reference the node’s 2D region are
placed inside the texture image.

[0053] For example, the node data may contain AdaBoost
classifiers, which include several weak classifiers. Each node
contains either a simple threshold classifier or a histogram
classifier whose decision is made on the basis of a single
feature. Thus, the PBT node data that is placed inside the
texture image must store the sum of alpha (or weighting)
values, the number of weak classifiers, and the data for each
of the classifiers. The weak classifiers are stored in adjacent
columns of the texture image, and each column containing an
associated weight a,. FIG. 5 illustrates an exemplary PBT
data structure that is packed into a texture image. All weak
classifiers are arranged along the columns 5024-502¢, and
each PBT node stores 2D texture coordinate indices to their
child nodes, represented by 5044 for node 0, 5045 fornode 1,
and 504¢ for node 3.

[0054] FIG. 6 illustrates an exemplary CUDA stack-based
implementation of evaluating a PBT using the algorithm
shown in FIG. 3.

[0055] In order to introduce new feature types into a PBT
evaluation, the CUDA PBT evaluation function shown in
FIG. 6 is represented by feature_func, which allows new
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feature types to be added. Both 3D sample box information
and 2D texture location of the feature data are passed to this
feature evaluation function.

[0056] Marginal space learning (MSL) is an efficient
method used to perform object localization. In MSL,, a large
9-dimensional search space for a similarity transformation is
decomposed into a series of smaller search spaces from trans-
lation to full similarity. During detection, a discriminative
classifier is evaluated on pixels in the volume to determine a
small set (e.g., 100-1000) of candidate positions. Orientation
is detected by evaluation each of these candidate boxes with
a series of hypothesis orientations and similarly forscale. The
final list of candidates are aggregated to obtain a single pose
estimate.

[0057] A Hierarchical Detection Network (HDN) to extend
MSL to multiple structure detection may be used. The HDN
decomposes a joint multi-object detection problem into
sequential detections with spatial priors used for object pre-
diction. The hierarchical detection of multiple structures is
broken down into a network of nodes for detection position,
orientation, and scale, for each structure. Spatial dependen-
cies are also represented as arcs in this detection network.
[0058] Although MSL is an efficient framework for detec-
tion, the main computational burden comes from evaluating a
discriminative classifier in each phase of the detection. In
position detection, the classifier is either evaluated by looping
over the 3D locations in the image (if the node has no ances-
tor) or by looping over a set of candidate locations provided
by a preceding node. For orientation and scale detection, the
classifier is evaluated over each of the input candidate loca-
tions using each of the possible orientation (or scale) hypoth-
esis. The same classifier is evaluated on different data, which
makes it an ideal detection algorithm for the data parallel
power of a GPU. GPU accelerated implementations are pos-
sible, using a PBT as the classifier for MSL.

[0059] During detection, a PBT tree is evaluated with the
context surrounding a specific location (and pose). Features
may be computed on the fly from an input image. In MSL,
position detection utilizes Haar features, and the subsequent
orientation and scale detection utilize efficient steerable fea-
tures that sample the image intensity and gradient in a volume
using the candidate pose of the box.

[0060] Haar features are weighted combinations of the
sums of cubic regions of an image. These sums are efficiently
calculated using the integral image. The features use no more
than four cubes. FIG. 7 illustrates exemplary cubes showing
Haar feature types. Cubes 702 indicate negative weights.
[0061] The features possible for a given location consists of
various translated and scaled versions of these boxes. Each
possible feature can be described by the size, weights, and
locations of these cubes (relative to a testing point). FIG. 8
illustrates a histogram classifier and feature data packed into
a single column of a texture image. Column 802 shows a
layout for Haar features with a histogram classifier, where
each cube must be stored in the texture. The histogram con-
tains 64-bins and are packed into two float components that
are interpreted as integers. Column 804 shows a steerable
feature with a threshold classifier requires only the threshold
for the classifier and a single texel to store the feature infor-
mation.

[0062] Evaluation on the GPU then proceeds by looking up
cubes for the feature, evaluating the integral image, and com-
bining the results. FIG. 9 shows an exemplary CUDA algo-
rithm for implementing the feature computation described
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above. To avoid conditionals for boundary testing, the bound-
ary of the integral image is padded with extra planes filled
with zeros.

[0063] Parallel work efficient algorithms for computing the
integral image in a 3D case on a GPU requires mimicking a
typical CPU implementation of the 3D integral image com-
putations that proceeds in 3 passes. While performing the
padding of the integral images with zeros, as stated above, the
accumulation of the image in the x-direction is also per-
formed on the CPU. Once this padded image is transferred to
the GPU, a grid of thread blocks on the x-z plane are used to
accumulate in the y-direction. The same step is taken for the
7z direction, where the threads are on the x-y plane.

[0064] FIG. 10 shows a table of specific steerable features
used. I represents the image intensity, VI={L, 1, L.}, and d is
an input sample direction. For a specific sample location, the
features are transformations on either a gray value, the gra-
dient, or the projection of the gradient onto an input direction.
In the case of oriented box detection, the input direction
comes from the x-axis of the box, and a discrete sampling of
3D locations is considered for these features within the
detected box. Each of these features can be calculated on one
of several image resolutions of an image pyramid. Therefore,
each feature is completely described by its position in the 3D
sampling pattern (3 integers), the type of feature (1 integer),
and the discrete image scale it is computed at (1 integer). By
packing the type and scale into a single value (e.g., scale*32+
type), this date can be packed into as few as 1 RGBA pixels of
a texture image.

[0065] To avoid a large conditional or switch statement
which treats all of the basic feature types as unique elements,
a series of common extractions is extracted. Extraction takes
place intwo phases, data extraction, and modification. During
data extraction, the initial datum to be extracted for modifi-
cation is extracted. This requires a group of conditionals
corresponding to those shown in FIG. 10. After data extrac-
tion, three modifiers can be applied: a power, an absolute
value, or a logarithm. Both the type of data to be extracted and
the subsequent modifier are stored as flags in a table of length
25.

[0066] FIG. 11 shows an algorithm for implementation in
CUDA for steerable feature evaluation. In the algorithm
shown in FIG. 11, p={I, I, I, L}, and input direction, d={0,
d, d, d,}, defined at reference number 1102. If threads in a
block diverge, the path each thread takes from the others is
short (and not the entire evaluation of the feature). The data
extraction and storage of flags is represented by reference
numeral 1104, and the pixel transformation is represented by
reference numeral 1106.

[0067] As texture arrays cannot be dynamically indexed in
CUDA, the multiple scales of the image are packed into a
single texture. An offset table stores the lower left corner of
each of the resolutions in this texture.

[0068] FIG. 12 shows a CUDA implementation integrated
into an existing software library. The GPU implementation is
mostly isolated from the detection package, with the interface
being exposed by deriving from the SrcObjectPositionDetec-
tor 1202 and SrcBoxDetector 1204. The detector may utilize
a classifier, such as a PBT, or a random Forest™, which is
discussed below.

[0069] Inorderto interface with CUDA, an object position
detector, ScrCudaPositionDetector 1206 replaces the main
classifier loop within the CPU position detector. This loop
iterates either over entire 3D volumes or a set of previously
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generated position candidates. The evaluation of the posterior
distribution from the underlying classifier is scheduled on the
GPU over these locations. The results are then sorted on the
GPU and only the required number of candidate locations are
transferred back to main memory.

[0070] The case is similar for orientation and scale detec-
tion which is handled by SrcBoxDetector 1204. A common
interface is derived to replace routines responsible for detect-
ing orientation and scale. In these instances, the input is a set
of' m candidate box locations for which there are also a set of
n hypothesis orientations (or scales). During orientation
detection, the 3D axes corresponding to the hypothesis ori-
entations are computed and transtferred to the GPU as a tex-
ture. The CUDA kernel for orientation detection, represented
by reference number 1208, uses m*n threads to evaluate the
PBT for all possible candidate boxes using each of the poten-
tial orientations. The situation is similar for scale detection
although the hypothesis scales are transferred to the GPU
instead of the orientations.

[0071] FIG. 13 illustrates a method for evaluating a forest
of'probabilistic boosting trees, in accordance with an embodi-
ment of the present invention. Decision trees, such as the
probabilistic boosting tree may be used in a forest algorithm,
such as the random forest algorithm. Evaluation of a forest
algorithm is similar to that of the PBT. For example, the forest
may comprise a plurality of PBTs, and the posterior distribu-
tion output of the forest is a combination of the output of each
PBT. At step 1302, input data is received at a GPU.

[0072] Atstep 1304, a plurality of PBTs are evaluated using
astackimplementation. The stack implementation may be the
one described above with respect to the method of FIG. 4.
[0073] At step 1306, a combined posterior distribution
model of each of the PBTs is generated. The posterior distri-
bution model may be represented by

1 T
72,7,
=1

where T represents the number of trees. The posterior distri-
bution model represents a set of classifications that may be
used for object classification and object detection. The set of
classifications from the posterior distribution model of the
PBT may beused thereafter by a detector to perform detection
on image data.

[0074] Experiments using the methods described herein
were performed. Specifically, the experiments were per-
formed ontwo hardware setups: Configl)a 1 GB Nvidia 9800
GT with an Intel Core(2) Duo with 3.5 GB of RAM; and
Config2) A 1.5 GB Nvidia 480 GTX with an Intel Core Quad
with 16 GB of RAM. Results for evaluating PBT are pre-
sented, namely feature evaluation, weak classifier evaluation,
strong classifier evaluation, and full classifier evaluation. The
GPU-PBT implementation was compared to similar imple-
mentations of random forests in terms of accuracy and
improvements in efficiency.

[0075] Unless otherwise noted, all timing results compare
the GPU version to an OpenMP implementation, where there
are 2 threads for Configl and 8 threads for Config2. In all
examples, the following datasets were used:

[0076] 1) A Semantic Indexing (SI) data set of ultrasound
images of fetal heads used in a semantic indexing project. 990
volumes with 1 mm resolution and dimensions 143x90x110
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to 231x161x208 were used for training. 215 were used for
testing. The HDN network is built on 6 structures, including,
e.g., the Corpus Callosum (CC) and Cerebellum (CER). The
HDN network encodes spatial relationships between struc-
tures, and performs detection on volume resolutions of 4 mm,
2 mm, and 1 mm.

[0077] 2) A data set including CT scans of 247 hips with
image dimensions ranging from 70x70x89 to 125x125x334.
The HDN network consists of position detection for the hip
and is performed on resolutions of 16 mm, 8 mm, and 4 mm.
[0078] As discussed above, Haar features use the integral
image, which can be calculated on the GPU. Table 1, shown
below, summarizes the speedups that are possible with GPU
accelerated integral image calculation. Table 1 shows speed-
ups in the table comparing the GPU accelerated version to a
multi-threaded OpenMP version. For each configuration, the
right column shows a time when reading back an image is not
required. The timings include the time to pad the image and
transfer the results on the GPU. For a volume of 256°, a
five-fold speedup is attained on both systems when the inte-
gral image does not need to be read back (as is the case during
detection).

TABLE 1
Configl Config?
size w/ read w/o read w/ read w/o read
64> 0.79 1.58 1.49 2.49
1283 3.47 5.07 2.15 3.44
2563 4.04 5.57 3.11 5.20
4003 3.89 5.35 295 4.86
[0079] Table 2, shown below, shows speedups gained

throughout the evaluation process for both steerable and Haar
features. The Feature row considers only evaluating the fea-
tures. In these tests, the same feature was evaluated on all
pixels in a volume. It is apparent that the steerable features
give a better speedup, possibly because their implementation
involves more computation, whereas the Haar features mostly
involve texture lookups and only a few additions (e.g. band-
width limited). As expected, these speedups propagate into
the weak classifier evaluation, which only evaluates a single
features and looks up a bit in a histogram bin. However, the
strong classifier evaluates and combines the results of roughly
40 weak classifiers. In this case, the two feature types start to
behave more similarly, where a 26x speedup is achieved with
Configl. On Config2, a strong classifier with steerable fea-
tures is still 1.5 times faster than the Haar features.

TABLE 2
Configl Config2
Haar Steerable Haar Steerable
Feature 3.2x 15% 4.9x 21.5x
Weak 10.5x 25.7x 38.6x 112.4x
Strong 26x 26x 22.3x% 36.5x
PBT 4.7x 7x 11.5x 12.18x

[0080] When it comes to evaluating an entire tree (the PBT
row of Table 2), there is only a 4.7x speedup on Config 1 and
12x on Config 2. The speedup of the strong classifier limits
the attainable speedup on the PBT tree. An explanation for the
different speedup times may be due to cache consistency.
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When evaluating a single strong classifier on every pixel, each
pixel will access the same relative location as its neighboring
pixel. As the tree is descended, neighboring pixels may take
different paths down the tree, meaning that they will be evalu-
ating different strong classifiers, which in turn use different
features. For both Haar features and steerable features, this
means that neighboring pixels will sample from different
relative locations in the texture, and different control points
may be taken.

[0081] FIG. 14 illustrates a graph showing execution times
when threads evaluate different classifiers and when thread-
blocks evaluate different classifiers. As nodes in a PBT are
descended, threads in the same thread block will evaluate
different nodes. The thread curve 1402 represents when
threads evaluate different classifiers and the block curve 1404
represents when different thread-blocks evaluate the different
classifiers. Thread curve 1402 shows that there is a longer
execution time when evaluating different classifiers with
threads. FIG. 14 also shows that evaluating the classifier by
blocks do not affect the run-times. In contrast, when evaluat-
ing by threads, when the tree is deeper, the evaluation is 5x
slower.

[0082] The results of experiments shown above illustrate
the potential benefit of using GPU accelerated PBT evalua-
tion. However, these experiments were carried out in ideal
execution environments where there is enough work for the
GPU and the same program is being run on all voxels in an
image. In the following paragraphs, the PBT is evaluated in
the context of the already optimized hierarchical detection
system.

[0083] Table 3 shows timings and speedups for the detec-
tion of 6 structures in the SI data set. These times were
averaged over 201 volumes. Most of the execution is in ori-
entation and scale detection (which uses steerable features).
On Configl, the overall speedup of 4.8x is slightly lower than
the results from the steerable feature PBT evaluation shown in
Table 2. Similarly, with Config2, the 9.73x speedup for hier-
archical detection was slightly lower than the results from the
steerable feature PBT evaluation in Table 2. This is due to
hierarchical detection having regions that are inherently
serial, which must be performed on the host CPU (e.g., results
are read back, candidates are pruned, and detection results are
written to files). Furthermore, some of the phases of detection
only need to evaluate the PBT on as few as 1000s of elements,
meaning that the GPU cannot be fully utilized.

TABLE 3

Configl Config?

CPU GPU S-up CPU GPU S-up

v 13.9 263 528 722 057 127x
cc 142 033  421x 088 012 7.33x
cP 290 063  460x 174 015  115x
HC L1l 032  346x 077 015 5.20x
CER 648 183  352x 440 067 6.54%
CSP 757 120 630x 344 024 14.6x
Sum 334 696  480x 185 1.90 9.73x
[0084] While code is executing on the CPU, it is possible to

concurrently execute some of the code on the CPU. This
trade-off was also investigated via experiments on the orien-
tation detector, which is the most time consuming component
of hierarchical detection.
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[0085] In this experiment, a portion of the work was
selected and scheduled on the GPU, and then the remaining
work was given to the CPU. Once the CPU finished work,
execution waited for the preceding GPU call to complete.
FIG. 15 illustrates the total detection time, the CPU execution
time, and the wait time for the GPU against varying propor-
tions of work assigned to the GPU. The total amount of time
for detection is represented by line 1502, the total CPU time
is represented by line 1504, and the GPU sync time (wait time
for the GPU) is represented by line 1506. The GPU work is
started asynchronously after the CPU work is initialized. A
non-zero GPU sync time indicates that the GPU does not have
enough work. The optimal ratio, from FIG. 15, for the detec-
tion line appears to be roughly 0.85.

[0086] For Configl, the optimal proportion is expected to
be in accordance with speedups obtained in the PBT evalua-
tion. For steerable features, the GPU was 7x faster than the
dual core for PBT tree evaluation, so the optimal proportion
of work on the GPU is expected to be around 0.875, as
confirmed by FIG. 15. In this case, a 10-15% improvement
can be expected in the runtime by utilizing the CPU at the
same time as the GPU.

[0087] Using Config 2, the speedup for orientation evalua-
tion was above 12x, meaning that utilizing the CPU at the
same time gives about 5% improvement.

[0088] In a further set of experiments, the accuracy and
speed-ups attained on the GPU PBT implementation vs. the
random Forest™ implementation was compared. A first
experiment compares the speed-up of the GPU implementa-
tion over a single thread CPU implementation in a classifica-
tion context. For this example, a random Forest™ of 10 trees
of'a depth 10 on every pixel of a 96x97x175 3D volume was
evaluated. The speedup on Configl is 26x and Config2 is
114x%. Table 4 illustrates the comparison of timings and speed-
ups for the GPU implementation of a random Forest™.

TABLE 4
CPU time [s] GPU time [s] Speed-up
Configl 29.3 1.1 26.6x
Config2 33.7 0.294 114x

[0089] A second experiment compares the results on hier-
archical position, orientation, and scale detection using the
CER detection from the SI dataset. In this case, the classifier
evaluation makes up a large portion of the total run-time. The
PBT was trained to a maximum depth of 6, with 40 weak
classifiers, and the forest implementation had a maximum
depth of 10 with 50 trees. In terms of total number of weak
classifiers, a descent through the forest implementation
evaluates more weak classifiers (maximum of 500), whereas
the PBT has at most 270 classifiers. However, the PBT uses
histogram classifiers, while the forest implementation uses a
threshold-based classifier. When testing on the training data,
both models achieved similar accuracy. Table 5 illustrates the
detection accuracy when testing on training data for the CER
data structure on the SI hierarchical data set.

TABLE 5
Classifier Center (mm) Line (mm)
RF 1.82 2.87
RF(cuda) 2.00 3.09
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TABLE 5-continued

Classifier Center (mm) Line (mm)
PBT 1.81 2.83
PBT(cuda) 191 3.05

[0090] Two measurements were used as shown in Table 5:
the distance between box centers (Center (mm)), and the
maximum distance between end-points of an axial line on the
recovered box and the ground truth (Line (mm)). From Table
5, it is apparent that both models behave similarly, and that in
each case, the CUDA implementation gives slightly worse
results due to a different feature evaluation code.

[0091] On both systems, the CUDA accelerated implemen-
tation of the forest implementation is more than 10x faster
than the multi-core CPU implementation. However, the CPU
version of the RF is 2x slower than the PBT with similar
accuracy on Config 1. The forest implementation of CUDA
achieves a better speed-up compared to the PBT, making the
GPU version of the forest implementation 2% slower than the
GPU-PBT on Config 1.

[0092] Table 6 shows the timing results for the CER detec-
tion onthe SI data for the two hardware configurations and the
PBT and forest models that achieve similar accuracy. The
forest implementation is slower on the CPU, but the GPU
implementation achieves a greater speedup than the PBT.
However, the GPU implementation on the forest is still slower
than the GPU implementation of the PBT.

TABLE 6

RF model (depth 10, num trees 50)

Configl Config2
Cpu(s) Gpu(s) S-up Cpu(s) Gpu(s) S-up
1 mm 7.57 0.68 11.16 4.65 0.31 14.79
2 mm 2.05 0.21 10.02 1.49 0.13 11.17
4 mm 12.62 1.02 12.41 7.39 0.25 30.11
Total 22.25 1.90 11.70 13.53 0.69 19.52

PBT model (depth 6, num. weak 40)

Configl Config2
Cpu(s) Gpu(s) S-up  Cpu(s) Gpu(s) S-up
1 mm 4.02 0.78 5.12 1.63 0.29 5.55

2 mm 1.62 0.36 4.49 0.81 0.14 5.9

4 mm 2.98 0.71 4.20 1.39 0.17 8.15
Totals 8.62 1.85 4.65 3.83 0.60 6.37

[0093] On the PDT data, a model was trained using 161
training samples and tested on 86 unseen cases. The PBT
contained 4 tree levels with 40, 42, 44, and 48 weak classifiers
on each level. For the forest implementation, the maximum
depth was set to 8 and trained two sets of models with either
10 or 30 trees. The forest implementation with 10 trees per-
forms better than the PBT, which has a similar number of
weak classifiers.

[0094] Table 7 shows the comparison of timings, speed-
ups, and accuracy on the 16-8-4 mm translation hierarchy.
The CPU version of the forest implementation is slower; and
because better speedups occur on the GPU, the two GPU
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implementations take the same amount of time. The forest
implementation is superior in this example due to superior
detection accuracy. Using 30 trees improves accuracy
because the GPU accelerated portions occupy more time and
better speed-ups can be seen.

TABLE 7
Configl Config? Testing

Gpu(s) Cpu(s) S-up Gpu(s) Cpu(s) S-up error
PBT 0.31 2.25 7.36  0.20 0.98 4,92 10.07
Ranfor 0.31 2.56 834 0.21 1.20 5.61 7.47
(10 trees)
Ranfor 0.60 644 10.7 0.27 2.88 10.6 4.93
(30 trees)
[0095] The following paragraphs discuss the evaluation of

improvements to the training procedure of the PBT. As dis-
cussed, the training of AdaBoost classifiers for a PBT could
be performed by computing a feature matrix for feature evalu-
ation, and then training the weak classifiers in parallel on the
GPU. In the hierarchical network, after the classifier for a
PBT is trained, a batch detection phase is performed. During
batch detection, the newly trained classifier is used to perform
detection on each input volume, and the results are then used
by the later nodes in the network. The detection code can be
immediately reused to speed-up the phases.

[0096] When training a strong classifier, there are often too
many positive and negative training samples to build a full
feature matrix, so a number of input samples are chosen
randomly to build the feature matrix (around 2500 positive
and 2500 negative samples). The input samples come from
different volumes, and there are often too many volumes to
keep on the GPU at all times. Therefore, if the features are to
be evaluated on the GPU, the total number of input volumes
used by the samples would need to be transferred to the GPU.
[0097] In order to evaluate the performance of the feature
matrix computation during training, 3 volumes are used and
the speed-up is measured in evaluating and reading back all
features. FIG. 16 shows speedups for Config2 using small
volumes in graph 1602 and speedups for Config2 using
medium volumes on graph 1604. The Haar features line for
graph 1602 is represented by line 1606 and the Steerable
features line for graph 1602 is represented by line 1608. The
Haar features line for graph 1604 is represented by line 1610
and the Steerable features line for graph 1604 is represented
by line 1612. From FIG. 16 it is apparent that if only a few
samples share the same volume, the speed-up will be low. For
Haar features, the speed-up also depends on the size of the
image (as the integral image is computed on the GPU).
[0098] In a benchmark, a hierarchical model was trained.
The hierarchical model had 3 resolutions of data, each with
translation, orientation, and scale detectors using 300 images
from the SI data set. For each PBT trained, there were roughly
2400 positive samples and 140K negative samples. Training
of'a node used a maximum of 2500 negative samples. Timing
results were all computed on Config2. The results after
including the CUDA enhancements (not including feature
matrix computation) are shown by Table 8. Table 8 shows the
total times for phases of the training on Config2. The weak
classifier training was sped-up, and the overall computation
time gives a 1.5x speedup overall. The 3.5x speed-up on weak
classifier training gives a roughly 2.1x speed-up for training a
strong classifier. The speed-up on the entire PBT training was
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1.7x (which includes loading data, determining which
samples to use, propagating samples down the tree, and cre-
ating the tree data structure).

TABLE 8
Component GPU (s) CPU (S) Speed-up
¢ Feature 1675.3 1623.4 1.0
** Weak classifs 1346.6 4695.7 35
¢ Strong 3021.8 6319.1 2.1
All Train 4269.4 72433 1.7
Train Detect 277.9 398.7 1.4
Other 1552.7 1649.0 1.1
Total 6100.0 9291.0 1.5
[0099] The above-described methods for evaluation of a

probabilistic boosting tree using a stack implementation and
for anatomical landmark, position estimation, and object seg-
mentation in a 3D volume, may be implemented on a com-
puter using well-known computer processors, memory units,
storage devices, computer software, and other components. A
high level block diagram of such a computer is illustrated in
FIG. 17. Computer 1702 contains a processor 1704 which
controls the overall operation of the computer 1702 by
executing computer program instructions which define such
operation. The computer program instructions may be stored
in a storage device 1712, or other computer readable medium
(e.g., magnetic disk, CD ROM, etc.) and loaded into memory
1710 when execution of the computer program instructions is
desired. Thus, the steps of the methods of FIGS. 1, 6, and 13
may be defined by the computer program instructions stored
in the memory 1710 and/or storage 1712 and controlled by the
processor 1704 executing the computer program instructions.
An image acquisition device 1720 can be connected to the
computer 1702 to input images to the computer 1702. For
example the image acquisition device 1720 may be a C-arm
image acquisition system capable of inputting 3D C-arm CT
images and 2D fluoroscopic images to the computer 1702. It
is possible to implement the image acquisition device 1720
and the computer 1702 as one device. It is also possible that
the image acquisition device 1720 and the computer 1702
communicate wirelessly through a network. The computer
1702 also includes one or more network interfaces 1706 for
communicating with other devices via a network. The com-
puter 1702 also includes other input/output devices 1708 that
enable user interaction with the computer 1702 (e.g., display,
keyboard, mouse, speakers, buttons, etc.). One skilled in the
art will recognize that an implementation of an actual com-
puter could contain other components as well, and that FIG.
17 is a high level representation of some of the components of
such a computer for illustrative purposes.

[0100] The foregoing Detailed Description is to be under-
stood as being in every respect illustrative and exemplary, but
notrestrictive, and the scope of the invention disclosed herein
is not to be determined from the Detailed Description, but
rather from the claims as interpreted according to the full
breadth permitted by the patent laws. It is to be understood
that the embodiments shown and described herein are only
illustrative of the principles of the present invention and that
various modifications may be implemented by those skilled
in the art without departing from the scope and spirit of the
invention. Those skilled in the art could implement various
other feature combinations without departing from the scope
and spirit of the invention.
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1. A method for training a probabilistic boosting tree, com-
prising:

receiving training data at a graphics processing unit (GPU);

dividing the training data into a first dataset and a second

dataset using a classifier;

training a first sub-tree and a second sub-tree at the GPU,

the first sub-tree using the first dataset and the second
sub-tree using the second dataset;

generating a posterior distribution model based on the

trained first sub-tree and the trained second sub-tree.

2. The method of claim 1, wherein training a first sub-tree
and a second sub-tree at the GPU comprises:

training a classifier at each node of the first sub-tree and the

second sub-tree.

3. The method of claim 2, wherein training a classifier at
each node of the first sub-tree and the second sub-tree com-
prises:

computing a feature matrix for each node.

4. The method of claim 3, computing a feature matrix for
each node comprises:

computing feature bounds;

mapping feature values to samples within a histogram bin

based on the feature bounds; and

computing an error associated with each classifier.

5. The method of claim 1, further comprising:

determining a set of classifications based on the posterior

distribution model.

6. The method of claim 1, wherein the method for evalu-
ating a probabilistic boosting tree is implemented using a
parallel computing architecture.

7. The method of claim 7, wherein the parallel computing
architecture is Compute Unified Device Architecture
(CUDA).

8. The method of claim 1, further comprising:

detecting structures in a 3D volume using the trained

probabilistic boosting tree.

9. A method for determining the posterior distribution of a
probabilistic boosting tree, comprising:

receiving input data at a graphics processing unit (GPU)

determining a weighted empirical distribution associated

with each node of the probabilistic boosting tree using a
stack implementation;

adding the weighted empirical distribution associated with

each node to a total posterior distribution value.
10. The method of claim 9, wherein determining a
weighted empirical distribution associated with each node of
the probabilistic boosting tree using a stack implementation
comprises:
pushing a root node of the probabilistic boosting tree onto
a stack;

determining whether to descend down the probabilistic
boosting tree thru a node in a left sub-tree or thru a node
in a right sub-tree.

11. The method of claim 10, wherein determining whether
to descend down the probabilistic boosting tree thru a node in
a left sub-tree or thru a node in a right sub-tree comprises:

determining a discriminative classifier of the root node;

if the discriminative classifier of the root node satisfies a

first condition, descending a left node in the left sub-tree;

if the discriminative classifier of the root node satisfies a

second condition, descending a right node in the right
sub-tree; and
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if the discriminative classifier of the root node satisfies a
third condition, descending both the left node and the
right node;

wherein the first condition signifies that a left node must be
descended, the second condition signifies that a right
node must be descended, and the third condition signi-
fies that both a left node and a right node must be
descended.

12. The method of claim 11, wherein descending to a left

node in the left sub-tree comprises:

determining a discriminative classifier of the left node;

if the left node is a leaf node, adding a weighted empirical
distribution of the left node to the total posterior distri-
bution value;

if the left node satisfies the first condition, pushing the left
node onto the stack and descend a left child node of the
left node;

if the left node satisfies the second condition, pushing the
left node onto the stack and descend a right child node of
the left node;

if the left node satisfies the third condition, pushing the left
node onto the stack and descend both the left child node
and the right child node.

13. The method of claim 11, wherein descending to a right

node in the right sub-tree comprises:

determining a discriminative classifier of the right node;

if the right node is a leaf node, adding a weighted empirical
weighted distribution of the left node to the total poste-
rior distribution value;

if the right node satisfies the first condition, pushing the
right node onto the stack and descend a left child node of
the right node;

if the right node satisfies the second condition, pushing the
right node onto the stack and descend a right child node
of the right node;

if the right node satisfies the third condition, pushing the
right node onto the stack and descend both the left child
node and the right child node.

14. The method of claim 9, wherein the method for evalu-
ating a probabilistic boosting tree is implemented using a
parallel computing architecture.

15. The method of claim 9, wherein the parallel computing
architecture is Compute Unified Device Architecture
(CUDA).

16. The method of claim 11, wherein the stack is associated
with one of a plurality of threads running in parallel.

17. A method for evaluating a forest of probabilistic boost-
ing trees, comprising:

receiving input data at a graphics processing unit (GPU);

evaluating the plurality of probabilistic boosting trees
using a stack implementation;

generating a combined posterior distribution based on a
posterior distribution of each of the plurality of proba-
bilistic boosting trees.

18. A system for training a probabilistic boosting tree,

comprising:

means for receiving training data at a graphics processing
unit (GPU);

means for dividing the training data into a first dataset and
a second dataset using a classifier;

means for training a first sub-tree and a second sub-tree at
the GPU, the first sub-tree using the first dataset and the
second sub-tree using the second dataset;
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means for generating a posterior distribution model based
on the trained first sub-tree and the trained second sub-
tree.

19. The system of claim 18, wherein means for training a
first sub-tree and a second sub-tree at the GPU comprises:

means for training a classifier at each node of the first

sub-tree and the second sub-tree.

20. The system of claim 19, wherein means for training a
classifier at each node of the first sub-tree and the second
sub-tree comprises:

means for computing a feature matrix for each node.

21. The system of claim 20, wherein means for computing
a feature matrix for each node comprises:

means for computing feature bounds;

means for mapping feature values to samples within a

histogram bin based on the feature bounds; and

means for computing an error associated with each classi-

fier.

22. The system of claim 18, further comprising:

means for determining a set of classifications based on the

posterior distribution model.

23. The system of claim 18, wherein the system for evalu-
ating a probabilistic boosting tree is a parallel computing
architecture.

24. The system of claim 23, wherein the parallel computing
architecture is Compute Unified Device Architecture
(CUDA).

25. The system of claim 18, further comprising:

means for detecting structures in a 3D volume using the

trained probabilistic boosting tree.
26. A system for determining the posterior distribution of a
probabilistic boosting tree, comprising:
means for receiving input data at a graphics processing unit
(GPU)

means for determining a weighted empirical distribution
associated with each node of the probabilistic boosting
tree using a stack implementation;

means for adding the weighted empirical distribution asso-

ciated with each node to a total posterior distribution
value.

27. The system of claim 26, wherein means for determining
a weighted empirical distribution associated with each node
of the probabilistic boosting tree using a stack implementa-
tion comprises:

means for pushing a root node of the probabilistic boosting

tree onto a stack;

means for determining whether to descend down the proba-

bilistic boosting tree thru a node in a left sub-tree or thru
a node in a right sub-tree.

28. The system of claim 27, wherein means for determining
whether to descend down the probabilistic boosting tree thru
a node in a left sub-tree or thru a node in a right sub-tree
comprises:

means for determining a discriminative classifier of the

root node;

means for descending a left node in the left sub-tree if the

discriminative classifier of the root node satisfies a first
condition;

means for descending a right node in the right sub-tree if

the discriminative classifier of the root node satisfies a
second condition; and

means for descending both the left node and the right node

if the discriminative classifier of the root node satisfies a
third condition;
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wherein the first condition signifies that a left node must be
descended, the second condition signifies that a right
node must be descended, and the third condition signi-
fies that both a left node and a right node must be
descended.

29. The system of claim 28, wherein means for descending
to a left node in the left sub-tree comprises:

means for determining the discriminative classifier of the

left node;

means for adding a weighted empirical weighted distribu-

tion of the left node to the total posterior distribution
value if the left node is a leaf node;

means for pushing the left node onto the stack and descend

a left child node of the left node if the left node satisfies
the first condition;

means for pushing the left node onto the stack and descend

aright child node of the left node if the left node satisfies
the second condition;

means for pushing the left node onto the stack and descend

both the left child node and the right child node if the left
node satisfies the third condition.

30. The system of claim 28, wherein means for descending
to a right node in the right sub-tree comprises:

means for determining the discriminative classifier of the

right node;

means for adding a weighted empirical distribution of the

left node to the total posterior distribution value if the
right node is a leaf node;

means for pushing the right node onto the stack and

descend a left child node of the right node if the right
node satisfies the first condition;

means for pushing the right node onto the stack and

descend a right child node of the right node if the right
node satisfies the second condition;

means for pushing the right node onto the stack and

descend both the left child node and the right child node
if the right node satisfies the third condition.

31. The system of claim 26, wherein the system for evalu-
ating a probabilistic boosting tree is implemented using a
parallel computing architecture.

32.The system of claim 31, wherein the parallel computing
architecture is Compute Unified Device Architecture
(CUDA).

33. The system of claim 28, wherein the stack is associated
with one of a plurality of threads running in parallel.

34. A system for evaluating a forest of probabilistic boost-
ing trees, comprising:

means for receiving input data at a graphics processing unit

(GPU);

means for evaluating the plurality of probabilistic boosting

trees using a stack implementation;

means for generating a combined posterior distribution

based on a posterior distribution of each of the plurality
of probabilistic boosting trees.

35. A non-transitory computer readable medium encoded
with computer executable instructions for training a probabi-
listic boosting tree, the computer executable instructions
defining steps comprising:

receiving training data at a graphics processing unit (GPU);

dividing the training data into a first dataset and a second

dataset using a classifier;

training a first sub-tree and a second sub-tree at the GPU,

the first sub-tree using the first dataset and the second
sub-tree using the second dataset;
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generating a posterior distribution model based on the

trained first sub-tree and the trained second sub-tree.

36. The computer readable medium of claim 35, wherein
the computer executable instructions defining the step of
training a first sub-tree and a second sub-tree at the GPU
comprises computer executable instructions defining the step
of:

training a classifier at each node of the first sub-tree and the

second sub-tree.

computing an empirical distribution to determine the first

dataset to send to the first sub-tree and to determine the
second dataset to send to the second sub-tree.

37. The computer readable medium of claim 36, wherein
the computer executable instructions defining the step of
training a classifier at each node of the first sub-tree and the
second sub-tree comprises computer executable instructions
defining the step of:

computing a feature matrix for each node.

38. The computer readable medium of claim 37, wherein
the computer executable instructions defining the step of
computing a feature matrix for each node comprises wherein
the computer executable instructions defining the steps of:

computing feature bounds;

mapping feature values to samples within a histogram bin

based on the feature bounds; and

computing an error associated with each classifier.

39. The computer readable medium of claim 35, further
comprising computer executable instruction defining the step
of:

determining a set of classifications based on the posterior

distribution model.

40. The computer readable medium of claim 35, wherein
the computer executable instructions for evaluating a proba-
bilistic boosting tree are implemented using a parallel com-
puting architecture.

41. The computer readable medium of claim 40, wherein
the parallel computing architecture is Compute Unified
Device Architecture (CUDA).

42. The computer readable medium of claim 35, further
comprising computer executable instructions defining the
step of:

detecting structures in a 3D volume using the trained

probabilistic boosting tree.

43. A non-transitory computer readable medium encoded
with computer executable instructions for determining the
posterior distribution of a probabilistic boosting tree, the
computer executable instructions defining steps comprising:

receiving input data at a graphics processing unit (GPU);

determining a weighted empirical distribution associated
with each node of the probabilistic boosting tree using a
stack implementation;

adding the weighted empirical distribution associated with

each node to a total posterior distribution value.
44. The computer readable medium of claim 43, wherein
the computer executable instructions defining the step of
determining a weighted empirical distribution associated
with each node of the probabilistic boosting tree using a stack
implementation comprises computer executable instructions
defining the steps of:
pushing a root node of the probabilistic boosting tree onto
a stack;

determining whether to descend down the probabilistic
boosting tree thru a node in a left sub-tree or thru a node
in a right sub-tree.
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45. The computer readable medium of claim 44, wherein
the computer executable instructions defining the step of
determining whether to descend down the probabilistic
boosting tree thru a node in a left sub-tree or thru a node in a
right sub-tree comprises computer executable instructions
defining the steps of:

determining a discriminative classifier of the root node;

if the discriminative classifier of the root node satisfies a

first condition, descending a left node in the left sub-tree;

if the discriminative classifier of the root node satisfies a

second condition, descending a right node in the right
sub-tree; and

if the discriminative classifier of the root node satisfies a

third condition, descending both the left node and the
right node;

wherein the first condition signifies that a left node must be

descended, the second condition signifies that a right
node must be descended, and the third condition signi-
fies that both a left node and a right node must be
descended.

46. The computer readable medium of claim 45, wherein
the computer executable instructions defining the step of
descending to a left node in the left sub-tree comprises com-
puter executable instructions defining the steps of:

determining the discriminative classifier of the left node;

if the left node is a leaf node, adding a weighted empirical
weighted distribution of the left node to the total poste-
rior distribution value;

if the left node satisfies the first condition, pushing the left

node onto the stack and descend a left child node of the
left node;

if the left node satisfies the second condition, pushing the

left node onto the stack and descend a right child node of
the left node;

if the left node satisfies the third condition, pushing the left

node onto the stack and descend both the left child node
and the right child node.
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47. The computer readable medium of claim 45, wherein
the computer executable instructions defining the step of
descending to a right node in the right sub-tree comprises
computer executable instructions defining the steps of:

determining the discriminative classifier of the right node;

ifthe right node is a leaf node, adding a weighted empirical
weighted distribution of the left node to the total poste-
rior distribution value;

if the right node satisfies the first condition, pushing the

right node onto the stack and descend a left child node of
the right node;

if the right node satisfies the second condition, pushing the

right node onto the stack and descend a right child node
of the right node;

if the right node satisfies the third condition, pushing the

right node onto the stack and descend both the left child
node and the right child node.

48. The computer readable medium of claim 43, wherein
the computer executable instructions for evaluating a proba-
bilistic boosting tree are implemented using a parallel com-
puting architecture.

49. The computer readable medium of claim 48, wherein
the parallel computing architecture is Compute Unified
Device Architecture (CUDA).

50. The computer readable medium of claim 45, wherein
the stack is associated with one of a plurality of threads
running in parallel.

51. A non-transitory computer readable medium encoded
with computer executable instructions for evaluating a forest
of probabilistic boosting trees, the computer executable
instructions defining steps comprising:

receiving input data at a graphics processing unit (GPU);

evaluating the plurality of probabilistic boosting trees

using a stack implementation;

generating a combined posterior distribution based on a

posterior distribution of each of the plurality of proba-
bilistic boosting trees.
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