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_ A method and system for evaluating probabilistic boosting 
(22) Flled? seP- 9: 2011 trees is disclosed. In an embodiment, input data is received at 

. . a graphics processing unit. A Weighted empirical distribution 
Related U's' Apphcatlon Data associated With each node of the probabilistic boosting tree is 
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22, 2010, provisional application No. 61/424,715, 
?led on Dec. 20, 2010. 

empirical distribution associated With each node is added to a 
total posterior distribution value. 
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Algorithm 1: PbtPosterior 
Data: N node of the tree 

Data: Lzleft (N) , Rzright (N) 
Result: pN(+l (X) the posterior probability for tree </206 

rooted at N 
if Leaf (N) then return qN(+l) ; 

p I NNuun; </2°2 

if p > (l—e1) then return PbtPosterior (R) ; 
else if p < e1 then return PhtPosterior (L) ; 

else if p > 0.5 + e2 then 

I_ return (l-p) qL(+1) + pPbtPosterior (R) 
else if p <0 .5 — e2 then 

|_return (l-p) PbtPosterior (L) +p qR (+1) 
else 
|_return (l-p) PbtPosterior (L) +p PbtPosterior (R) 

FIG. 2 
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Algorithm 2: PbtPosteriorStackBased 
Data: N node of the tree 
Result: p (+1 (X) the posterior of the tree</310 
S = (<root,l . O>) , 
total <- 0 
while |( s (( s 0 (10/306 

<N,w> I pop (S) ; </308 
if isLeaf(N) then 

total <- total + W * qN(+l);</302 

cpntinue; 
p eqNHLx); — 
if p > (l—e1) then 
_ S.push (<right (N) , w>) 

else if p < e1 then 
_ S.push (<left (N) , p>) 

else if p > 0. 5 + e2 then 
L : left(N); </312 
total I total + W * (l-p) qL (+1) ; 

_ S.push (<right (N) , w * p>) , 

else if p < 0. 5-e2 then 
R= left (N) ; 
total=total + w * p *qR (+1) ; 

_ s .push (<left (N) , w * (l-p) >) 
else 

// Descend down both nodes ; 
S.push (<riqht (N) , w * p>) ; 

_ S.push (<left (N) , w * (1-p) >) 

return total; 

FIG. 3 
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template<float feature_func(float3& pixel, 
float nx, 
float ny)> 

_device_ float 
pbt evaluate_tree(const float3& pixel) { 

floatll stack [kMaxQueueSize]; 
int numlnStack I l; 

// lnsert root (@ 0,0) with weight 1. 

while (numlnStack>0) { 
__numlnQueue; 
floatll node = stack[numlnQueue]; 
float prob = 

pbt eval classifier 
Zfeat?re_func> (pixel, node . x, node . y) ; 

if (prob > 1.0 — el) 

FIG. 6 
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float4 numCubes I texZD (texPBT, x, y) ; 

for (int iIO; i<numCubes .x; i++) { 
float4 cubemin = texZD (PBT, x, y+2*i+1) ; 

float4 cubemax I teXZD (PBT, x, y+2*i+2) ; 
val += cubemin.w * 

haar eval cube (cubmin+pos, 
} _ _ cubemax+pos) ; 

return val; 

FIG. 9 
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float sf eval (f loat4 p, float4 0), int type) [ 
float-val; 
int flags = flagTableShared(type] , 

} 
else if (flags & Projection) ( 

p.x = 0, val = dot4(d, p); 

max(le—10, sgrt(dot4(p. p))); 
cos (min (1 .0, 

al 

if (flags & NormalDistance) [ 
x 0 ,' float proj= dot4 (d, p) ; 

dot4(p, p)— proj * proj; 

1 
else 

P. 
1 
else val = dot4(component[typ€], P); 

// Transform the pixel. 
if (flags & Absolute) value I fabsf (val) ; 
if (flags & Log) val = log(max(le—3, val)) , 
else val = pow (val, powTable [type] ) ; 
return val, 

FIG. 11 
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METHOD AND SYSTEM FOR EVALUATION 
USING PROBABILISTIC BOOSTING TREES 

[0001] This application claims the bene?t of US. Provi 
sional Application No. 61/385,240, ?led Sep. 22, 2010, and 
US. Provisional Application No. 61/424,715, ?led Dec. 20, 
2010, the disclosures of Which are herein incorporated by 
reference. This application is related to US. application Ser. 
No. 12/180,696, ?led Jul. 28, 2008, and issued Apr. 20, 2010 
as US. Pat. No. 7,702,596, and US. application Ser. No. 
12/248,536, ?led Oct. 9, 2008. 

BACKGROUND OF THE INVENTION 

[0002] The present invention relates to evaluation of data 
using probabilistic boosting trees. 
[0003] Discriminative classi?ers are often a bottleneck in 
3D pose detection routines. Tree-based classi?ers, such as 
Probabilistic Boosting Trees (PBT) and Random Forests, are 
discriminative models used for vision-based classi?cation 
and object detection. The classi?er is typically evaluated at 
every pixel in an image, Which can be inef?cient. The PBT is 
a general type of decision tree that uses strong classi?ers to 
make fuZZy decisions at internal nodes. Generally, using PBT 
requires multiple recursive calls, Which sloWs doWn object 
detection. 
[0004] E?iciency can be improved using hierarchical meth 
ods or cascades, but 3D medical applications and real-time 
applications require further ef?ciency improvements. 

BRIEF SUMMARY OF THE INVENTION 

[0005] The present invention provides a method and system 
for evaluation of probabilistic boosting trees. In an embodi 
ment, input data is received at a graphics processing unit. A 
Weighted empirical distribution associated With each node of 
the probabilistic boosting tree is determined using a stack 
implementation. The Weighted empirical distribution associ 
ated With each node is added to a total posterior distribution 
value. 
[0006] In an embodiment, posterior distribution of a proba 
bilistic boosting tree is determined by determining a Weighted 
empirical distribution associated With each node of the proba 
bilistic tree using a stack implementation, and adding the 
Weighted empirical distribution associated With each node to 
a total posterior distribution value. A root node of the proba 
bilistic boosting tree is pushed onto a stack and then is deter 
mined Whether to descend thru a node in a left sub-tree or a 
node in a right sub-tree. 
[0007] In an embodiment, a discriminative classi?er of the 
root node is determined. Based on the discriminative classi 
?er satisfying certain conditions, a left node, a right node, or 
both the left node and the right node of the root node are 
descended. Descending a node comprises determining a dis 
criminative classi?er of that node. If the discriminative clas 
si?er is a leaf node, the Weighted empirical distribution of the 
node is added to the total posterior value. Otherwise, the node 
is pushed onto a stack and the left node, right node, or both the 
left and the right node of the node are descended. 
[0008] In an embodiment, the probabilistic tree is evaluated 
using a parallel computing architecture. The parallel comput 
ing architecture may be Compute Uni?ed Device Architec 
ture (CUDA). The stack may be associated With one of a 
plurality of threads running in parallel. 
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[0009] In an embodiment, a method and system for evalu 
ating a forest of probabilistic boosting trees is disclosed. Input 
data is received at a graphics processing unit. The plurality of 
probabilistic boosting trees is evaluated using a stack imple 
mentation. A combined posterior distribution based on a pos 
terior distribution of each of the plurality of probabilistic 
boosting trees is generated. 
[0010] These and other advantages of the invention Will be 
apparent to those of ordinary skill in the art by reference to the 
folloWing detailed description and the accompanying draW 
1ngs. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] FIG. 1 illustrates a method for training a probabilis 
tic boosting tree (PBT), in accordance With an embodiment of 
the present invention; 
[0012] FIG. 2 shoWs pseudocode for determining the pos 
terior value of a node of a PBT using recursion; 
[0013] FIG. 3 shoWs pseudocode for determining the pos 
terior value of a node of a PBT using a stack implementation 
according to an embodiment of the present invention; 
[0014] FIG. 4 illustrates a method for determining the pos 
terior distribution of a node of a probabilistic boosting tree, in 
accordance With an embodiment of the present invention; 
[0015] FIG. 5 illustrates an exemplary PBT data structure 
that is arranged into a texture image; 
[0016] FIG. 6 illustrates an exemplary Compute Uni?ed 
Data Architecture (CUDA) stack-based implementation of 
evaluating a PBT, in accordance With an embodiment of the 
present invention; 
[0017] FIG. 7 illustrates exemplary cubes shoWing Haar 
feature types, in accordance With an embodiment of the 
present invention; 
[0018] FIG. 8 illustrates a histogram classi?er and feature 
data packed into a single column of a texture image, in accor 
dance With an embodiment of the present invention; 
[0019] FIG. 9 shoWs an exemplary CUDA algorithm for 
implementing feature computation, in accordance With an 
embodiment of the present invention; 
[0020] FIG. 10 shoWs a table of speci?c steerable features 
used, in accordance With an embodiment of the present inven 
tion; 
[0021] FIG. 11 shoWs an algorithm for implementation in 
CUDA for steerable feature evaluation, in accordance With an 
embodiment of the present invention; 
[0022] FIG. 12 shoWs a CUDA implementation integrated 
into an existing softWare library, in accordance With an 
embodiment of the present invention; 
[0023] FIG. 13 illustrates a method for evaluating a forest 
of probabilistic boo sting trees, in accordance With an embodi 
ment of the present invention; 
[0024] FIG. 14 illustrates a graph shoWing execution times 
When threads evaluate different classi?ers and When thread 
blocks evaluate different classi?ers, in accordance With an 
embodiment of the present invention; 
[0025] FIG. 15 illustrates total detection time, central pro 
cessing unit (CPU) execution time, and Wait time for a graph 
ics processing unit (GPU), in accordance With an embodi 
ment of the present invention; 
[0026] FIG. 16 illustrates speedup comparisons for small 
volumes and medium volumes, in accordance With an 
embodiment of the present invention; and 
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[0027] FIG. 17 is a high level block diagram ofa computer 
capable of implementing the present invention. 

DETAILED DESCRIPTION 

[0028] The present invention is directed to a method and 
system for evaluation of probabilistic boosting trees. 
Embodiments of the present invention are described herein to 
give a visual understanding of the method for evaluation of 
probabilistic boosting trees. A digital image is often com 
posed of digital representations of one or more objects (or 
shapes). The digital representation of an object is often 
described herein in terms of identifying and manipulating the 
objects. Such manipulations are virtual manipulations 
accomplished in the memory or other circuitry/hardware of a 
computer system. Accordingly, it is to be understood that 
embodiments of the present invention may be performed 
Within a computer system using data stored Within the com 
puter system. 
[0029] FIG. 1 illustrates a method for training a probabilis 
tic boosting tree (PBT), according to an embodiment of the 
present invention. FIG. 1 more speci?cally describes accel 
erated training of a probabilistic boosting tree using a graph 
ics processing unit (GPU). 
[0030] At step 102, training data is received. The training 
data may be annotated training data including images having 
annotations representing locations of landmarks of obj ects in 
the image. The training data may consist of images having 
annotations representing locations of landmarks of obj ects in 
the image. Training data can be medical image data such as 
computerized tomography (CT), magnetic resonance imag 
ing (MRI), X-ray, or Ultrasound image data. 
[0031] A PBT models the posterior distribution of a data 
set. In training a PBT, the aim is to enable the use of the PBT 
as a discriminative model for classi?cation and detection of 
an object in image data. A PBT is a binary decision tree With 
a fuZZy decision taken at each internal node of the tree 
depending on the output of the node’s strong classi?ers. The 
posterior value of any given individual node is determined by 
combining the posterior values of its child nodes using a 
Weighted distribution. Weights used in the determination are 
determined by evaluating a node’s strong (learned) classi?er, 
(1N(y|x). 
[0032] Each node N contains a strong classi?er, (A1(y|x), and 
the empirical distribution of its leaf nodes qN(y), Where ye{— 
l,+ l }, and x is an input point. The strong classi?er can be any 
classi?er that uses a problem speci?c feature. For example, an 
AdaBoost classi?er can be used, Which combines several 
binary Weak classi?ers to produce a strong estimate. 
[0033] At step 104, the training data is divided into a ?rst 
data set and a second data set by a classi?er. The classi?er that 
divides the training data is a strong (learned) classi?er asso 
ciated With the top parent node of the PBT. 
[0034] At step 106, a ?rst sub-tree and a second sub-tree are 
trained. The ?rst data set is used to train a ?rst sub-tree of the 
parent node and the second data set is used to train a second 
sub-tree of the parent node. A classi?er at each node of the 
PBT is trained using a feature matrix. 
[0035] During training of a PBT, the PBT is constructed 
using a set of positive and negative examples, Which may 
originate from different 3D images. Each node of the PBT 
includes a strong classi?er, such as the AdaBoost classi?er, 
Which may be trained for that particular node. A feature 
matrix is computed (e.g., every possible feature is evaluated 
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for every input sample), and then each of the Weak classi?ers 
that constitute the strong classi?er is trained using the feature 
matrix. 

[0036] Using the feature matrix, the Weak classi?ers of the 
strong classi?er may be trained sequentially by choosing each 
Weak classi?er using a greedy algorithm by considering hoW 
Well each feature acts as a classi?er. The algorithm for choos 
ing the Weak classi?er during training includes three passes. 
First, feature bounds must be computed. Afterwards, a feature 
value is mapped to each sample Within a histogram bin. Then, 
the histogram bins are incremented. Each sample may then be 
sampled With the trained classi?er to compute an error. All of 
the aforementioned steps may be performed on a GPU. The 
operations for a classi?er are independent, so each Weak 
classi?er can be trained by a different thread. The feature 
matrix column indexes the feature type, While the roW indexes 
the sample. Each thread processes a single column. 

[0037] The feature matrix is stored as a single component 
?oating-point texture. The input is then split up into several 
textures of a maximum Width and processed in chunks. 
Through CUDA texture limits, the restriction is a maximum 
Width of 32768/sizeof(?oat):8l92. The feature data stays on 
the GPU for each of the Weak training classi?er passes. For 
each pass, the Weights of the samples are updated. 
[0038] Returning to FIG. 1, at step 108, a trained posterior 
distribution model of the PBT is generated based on the 
feature matrices of each node. The posterior distribution 
model represents a set of classi?cations that may be used for 
object classi?cation and object detection. The set of classi? 
cations from the posterior distribution model of the PBT may 
be used thereafter by a detector to perform detection on image 
data. For example, the trained tree can be used to estimate the 
posterior probability of unseen data using a stack implemen 
tation on a GPU, as discussed in further detail in the folloWing 
paragraphs. 
[0039] The data parallel nature of evaluation using the PBT 
means that it is advantageous to utiliZe the computation 
poWer of a GPU instead of a central processing unit (CPU). 
Thus, in order to implement evaluation of a PBT on a GPU, 
multiple recursive calls, Which are used in a traditional evalu 
ation of a PBT may be replaced using a stack-based imple 
mentation. Cached texture memory is used to represent fea 
tures and tree data structures. Since GPUs do not support 
recursive calls, the stack-based implementation is necessary 
to remove recursion. 

[0040] For comparison, FIG. 2 shoWs pseudocode for 
determining the posterior value of a node of a PBT using 
recursion. FIG. 3 shoWs pseudocode for determining the pos 
terior value of a node of a PBT using a stack implementation 
according to an embodiment of the present invention. 

[0041] The posterior probability of a node, is recursively 
computed as a Weighted combination of the posterior prob 
abilities of the child nodes, referenced by reference numeral 
204. The Weight factor of this combination is determined by 
evaluating the node’s strong classi?er, referenced by refer 
ence numeral 202. The recursion terminates at leaf nodes of 
the tree (i.e., nodes With no child nodes), Which simply return 
their empirical distribution qN (+1). The ?nal result, or pos 
terior distribution for each node is a sum of Weighted empiri 
cal distributions of the child nodes, represented by a result 
referenced by reference numeral 206. The total Weight given 
to any node’s empirical distribution is the product of the 
Weights associated With the path from the root to the node. 




















