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Abstract
Automatic segmentation of lung tissue in thoracic CT scans is useful for

diagnosis and treatment planning of pulmonary diseases. Unlike healthy lung
tissue that is easily identifiable in CT scans, diseased lung parenchyma is
hard to segment automatically due to its higher attenuation, inhomogeneous
appearance, and inconsistent texture. We overcome these challenges through
a multi-layer machine learning approach that exploits geometric structures
both within and outside the lung (e.g., ribs, spine). In the coarsest layer, a
set of stable landmarks on the surface of the lung are detected through a hi-
erarchical detection network (HDN) that is trained on hundreds of annotated
CT volumes. These landmarks are used to robustly initialize a coarse statis-
tical model of the lung shape. Subsequently, a region-dependent boundary
refinement uses a discriminative appearance classifier to refine the surface,
and finally a region-driven level set refinement is used to extract the fine scale
detail. Through this approach we demonstrate robustness to a variety of lung
pathologies.

1 Introduction

Thoracic CT images are clinically used for screening, diagnosis, and treat-
ment planning of lung diseases [16, 14, 13]. Computer aided diagnosis (CAD)
tools built for CT imaging rely on a segmentation of the lung as the first
step [24]. For example, algorithms for detection of malignant nodules [15, 1]
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Fig. 1 Examples of how diseases, such as tumors or interstitial lung disease, affect
the appearance of lung in CT.

and classification of lung tissue into various diseases [34, 40, 37, 38] restrict
processing to within the lung regions only.

Further semantic decomposition of the lung tissue into lobes, e.g., [41, 35],
and methods to visualize dynamic motion of lung function through respira-
tory cycles [8] also rely on a segmentation of the lung. As lung segmentation
is an important prerequisite for these applications, it is important for it to
be robust to abnormalities. Failures in the segmentation algorithm propagate
to failures in further processing. In CAD applications, these failures mean a
clinician may not be warned about a potential cancerous tumor [1].

Automatically segmenting healthy lung in CT is relatively easy due to low
attenuation of lungs compared to surrounding tissue. Pathologies, such as in-
terstitial lung disease (ILD), pleural effusion, and tumors, on the other hand,
significantly change the shape, appearance, or texture of lung parenchyma
(Fig. 1). In a clinical setting, pathologies are often no longer an exception
but rather the norm, and methods robust to these variations are necessary.

In this article, we address the automatic segmentation of challenging cases
described above and illustrated in Fig. 1. We first review the basic algorithms
for segmenting healthy lung parenchyma and demonstrate the limitations of
these algorithms in the presence of pathologies (§2). We then discuss how
texture cues, anatomical information, and statistical shape models, have been
leveraged to improve robustness in the presence of disease. This is followed
by the presentation of a method that utilizes machine learning with both
texture cues and anatomical information from outside the lung to obtain an
robust lung segmentation that is further improved with level set refinement
(§3). These algorithms are implemented in a modular software framework
that promotes reuse and experimentation (§4).

2 Segmenting Healthy Lungs

As healthy lung parenchyma has lower attenuation than the surrounding tis-
sue, simple image processing techniques often achieve good results. The at-
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Fig. 2 Healthy lung tissue is easily separable from body tissue with a single threshold.

Fig. 3 Segmentation by simple thresholding often excludes airways and vessels (left).
These vessels are easily removed by morphological operations or by removing small
connected components on 2D slices (right).

tenuation of healthy lung tissue in CT varies across the lung, depends on the
phase of respiratory cycle [25] and image acquisition settings [2], with mean
values being around -860 to -700 HU [25]. However, as illustrated in Fig. 2,
the intensity distribution within the lung region is often completely disjoint
from that of the higher density body tissue. Thus simple image processing
operations, such as region growing, edge tracking [10], or simple threshold-
ing [11, 23, 4], can be used to separate lung from body tissue.

For example, thresholding methods first separate body tissue from sur-
rounding background tissue by removing large connected components touch-
ing the edges of the images. Lung tissue can then be separated from the body
tissue with a threshold. Hu et al. propose to use a dynamic threshold, τ, that
is iteratively updated to be the mean of the average intensities between the
lung and body, τt = (µ

t−1
lung + µ

t−1
body)/2, where µ t

lung and µ t
body are the mean HU

values of the lying below and above τt respectively [11]. The initial threshold,
τ0, is estimated with µ0

lung = −1000 and µ0
body is the average intensity of all

HU values greater than 0.
Depending on the application, the final step is to separate the segmented

lung tissue into left and right lungs. The thresholded lung regions are con-
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Fig. 4 Small juxtapleural nodules like those in the left figure can be included in the
final segmentation through the use of morphological operations, but finding a set of
parameters to include all possible tumors, such as those in the cases on the right, is
challenging.

nected by the trachea and large airways, and can be separated by region
growing a trachea segmentation from the top of the segment [11, 39]. Fur-
ther, the lungs often touch at the anterior and posterior junctions and need
to be separated using another post-process that uses a maximum cut path to
split the single lung component into the individual lungs [26, 4, 11].

The simple thresholding scheme gives a good gross estimate to the lung
volume but often excludes small airways and vessels that a clinician would
include with the lung annotation. These small regions can be filled through
the use of morphological operations [11, 36], or by performing connected
component analysis on the image slices [39] (see Fig. 3).

Another subtle problem comes with nodules that lie on the boundary of the
lung [27]. A complete segmentation of the lung is essential for cancer screen-
ing applications [3], and studies on computer aided diagnosis have found the
exclusion of such nodules to be a limitation of automated segmentation and
nodule detection methods [1]. These nodules can be included in the segmen-
tation through the use of special post-processing steps, such as the adaptive
border marching algorithm [23], which tries to include small concave regions
on the lung slices. However, such algorithmic approaches are bound to fail
for larger tumors whose size and shape are unconstrained (Fig. 4).

Even more problematic is interstitial lung disease, which causes a dramatic
change in the attenuation and local texture pattern of lung parenchyma.
Unlike the clearly separated histograms of healthy lung (Fig. 3), such diseased
tissue will often have attenuation values that overlap with the surrounding
body tissue (Fig. 5). Although higher thresholds, such as -300 HU [39], can be
used to include more lung tissue, simple thresholding methods are incapable
of robustly segmenting these challenging pathologies.
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Fig. 5 Lungs with diffuse pulmonary disease has higher density tissue and is difficult
to separate with a simple thresholding.

2.1 Cues for segmenting pathological lung

Intensity alone is the single strongest cue for segmenting healthy lung tissue,
but in order to address the high density lung tissue associated with interstitial
lung disease, and the different shapes associated with varying tumors, cues
based on texture, anatomy, or shape priors must be exploited.

2.1.1 Texture Cues

Diseased parenchyma has a different texture pattern which can often be ex-
tracted through the use of texture features [20, 39, 37]. Texture, the local
structural pattern of intensities, is commonly characterized by measurements
obtained from a co-occurance matrix [9], which records the joint frequency
of intensity values between two pixels separated by a fixed offset computed
over small volumes of interest around each image voxel. Quantities derived
from this co-occurance matrix, such as entropy, can be used to directly iden-
tify diseased tissue [39], or statistical classifiers can be trained to distinguish
healthy from pathological tissue using features derived from this matrix [37].

2.1.2 Anatomical Cues

As the appearance of the pathological lung parenchyma can vary dramati-
cally, texture and intensity cues are incapable of capturing all pathologies.
These quantities, which are internal to the lung, can be combined with neigh-
boring anatomical context, such as distance and curvature of the ribs. For
example, Prasad et al., use the curvature of the ribs in order to adaptively
choose a threshold for the lung segmentation [22]. As the lung border should
also lie close to the ribcage and spine, distance to these anatomical struc-
tures can be combined with intensity features in classification of the lung
border [12].
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2.1.3 Shape Modeling

In order to avoid segmentations with unlikely shapes, such as the one in
Fig. 5, a shape prior can be used as an additional cue for segmenting chal-
lenging cases. Although some inconsistencies in the shape can be removed,
for example, by post-processing operations [11] or through ensuring smooth-
ness in the resulting segmentations [12], the result should be constrained to
be lung-like. Explicit statistical models of shape variability, such as a point
distribution model that models the shape variability with a low dimensional
linear subspace can be used to constrain the resulting segmentation [6]. These
models have been effectively used to overcome pathologies [32, 30].

Segmentation-by-registration are another class of methods that enforce a
prior constraint on the resulting segmentations. In such approaches, a refer-
ence image complete with annotations is aligned to the target image through
the process of image alignment. The target segmentation is then derived from
the aligned reference image. To increase generality, multiple reference images
can be aligned to the target image and the final segmentation can be taken
as the fused result. Depending on the matching score used in the registration,
such methods have shown to be effective for pathological lungs [28].

3 Multi-Stage Learning for Lung Segmentation

To ensure robustness, a complete solution to the segmentation of pathological
lung in CT has to include components that address shape and appearance
variability caused by both tumors and diffuse lung disease. In this section we
introduce a robust machine learning method for segmenting challenging lung
cases that uses external anatomical information to position a statistical mesh
model on the image. A large database of annotated images is used to train
discriminative classifiers to detect initial poses of the mesh models and to
identify stable boundary landmarks [30]. The boundary of this initialization
is then guided by texture and appearance patterns to identify the boundary of
the lung. Finally, as pathologies often only occupy a small portion of the lung,
a fine-scale level set surface refinement is used to ensure the final segmentation
includes all healthy regions as well as preserving the segmentation in the
pathological regions [18]. The elements of the system are illustrated in Fig. 6.

3.1 Learning-based Robust Initialization

For the initialization phase, the carina of the trachea is detected in the
input volume. Given the carina location, a Hierachical Detection Network
(HDN) [31], is used to detect an initial set of pose parameters of statistical
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Fig. 6 A hierarchical detection network is used to initialize the lung segmentations
from a set of stable landmarks. These segmentations are further refined by trained
boundary detectors and finally by a fine-scale level set refinement.
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Fig. 7 The variability of right lung shape model by using one of the first three basis
vectors to represent the shape.

shape models of each lung (§3.1.2 & §3.1.3). In the next level of the hier-
archy, stable landmark points on the mesh surface are refined to get an im-
proved lung segmentation that is less sensitive to appearance changes within
pathologies (§3.1.4). As we will see, these landmark points tend to use nearby
anatomical context, e.g., ribs, to improve the segmentation. A further refine-
ment comes by displacing the mesh surface so as to maximize the score of an
appearance-based classifier (§3.2).

3.1.1 Input Annotation Database

A set of CT images complete with manual annotation of the lungs is used as
input to the algorithm. In an offline training step, statistical shape models of
the shape variation within the database annotations are learned.

The input annotation meshes are first brought into correspondence and
remeshed so that each annotation mesh has the same number of points and a
consistent triangulation. Each annotation mesh, Mk = (Pk,T ), then consists
of a set of points, Pk = {vki ∈ R3}N

i=1, and a single set of triangle indices,

T = {4 j ∈ Z3}Ntri
j=1.
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The variability in the point coordinates is modeled through a low-dimensional
linear basis giving a statistical shape model,

S = ({v̂}N
i=1,{U j}M

j=1), (1)

that consists of a mean shape, {v̂}N
i=1, and the linear basis shapes, U j =

{ui j}N
i=1. The linear basis is empirically estimated by performing PCA on

the aligned input annotation meshes. The alignment uses procrustes analysis
to remove translation, orientation, and scale variation of the corresponding
meshes.

A mesh in the span of the basis can be approximated by modulating the
basis shape vectors and applying a similarity transform

g(vi;{λ j},p,r,s) = p+M(s,r)∑
j

(v̂i +ui jλ j) , (2)

where M(s,r) is the rotation and scale matrix parameterized by rotation
angles, r, and anisotropic scale, s. p is a translation vector, and {λ j} are
the shape coefficients. Figure 7 illustrates the variability encoded by the first
three basis vectors for a model of the right lung.

Each training shape can be approximated in the same manner, meaning
each training shape has an associated pose and shape coefficient vector. In the
following description of the image-based detection procedure, the relationship
between these pose and shape coefficients and the image features is modeled
with machine learning so that the parameters of the shape model can be
inferred on unseen data.

3.1.2 Hierarchical detection network

The Hierarchical Detection Network (HDN) uses an efficient sequential deci-
sion process to estimate the unknown states (e.g., object poses or landmark
positions) of a sequence of objects that depend on each other [31]. In the case
of lung segmentation, the unknown states are the poses and shape coefficients
that align a statistical model of the lung to the image, which depend on the
detected trachea landmark point. The location of stable lung boundary points
are dependent on the pose parameters of the lungs.

The HDN infers multiple dependent object states sequentially using a
model of the prior relationship between these objects. Let θ t denote the
unknown state of an object (e.g., the 9 parameters of a similarity transform
or the 3D coordinates of a landmark), and let the complete state for t + 1
objects, θ 0,θ 1, . . . ,θ t , be denoted as θ 0:t . Given a d dimensional input vol-
ume, V : Rd 7→R, the estimation for each object, t, uses an observation region
Vt ⊆ V . The complete state is inferred from the input volume by maximiz-
ing the posterior density, f (θ 0:t |V0:t), which is recursively decomposed into
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a product of individual likelihoods, f (Vt |θ t), and the transition probability
between the objects, f (θ t |θ 0:t−1).

The recursive decomposition of the posterior is derived by applying a se-
quence of prediction and update steps. For object t, the prediction step ignores
the observation region, Vt , and approximates the posterior, f (θ 0:t |V0:t−1), us-
ing a product of the transition probability, f (θ t |θ 0:t−1), and the posterior of
the preceding objects:

f (θ 0:t |V0:t−1) = f (θ t |θ 0:t−1,V0:t−1) f (θ 0:t−1|V0:t−1), (3)

= f (θ t |θ 0:t−1) f (θ 0:t−1|V0:t−1), (4)

as θ t and V0:t−1 are assumed to be conditionally independent given θ 0:t−1.
The observation region, Vt , is then combined with the prediction in the

update step,

f (θ 0:t |V0:t) =
f (V0:t |θ 0:t) f (θ 0:t)

f (V0:t)
=

f (Vt |V0:t−1,θ 0:t) f (V0:t−1|θ 0:t) f (θ 0:t)

f (Vt |V0:t−1) f (V0:t−1)
(5)

=
f (Vt |θ t) f (θ 0:t |V0:t−1)

f (Vt |V0:t−1)
, (6)

where the denominator is a normalizing term, and the derivation assumes
Vt and (V0:t−1,θ 0:t−1) are conditionally independent given θ t . The likelihood
term, f (Vt |θ t), is modeled with a discriminative classifier,

f (Vt |θ t) = f (y = +1|Vt ,θ t), (7)

where the random variable y∈{−1,1} denotes the occurrence of the tth object
at pose θ t . The posterior, f (y = +1|Vt ,θ t), is modeled with a powerful tree-
based classifier, the Probabilistic Boosting Tree (PBT) [33], which is trained
to predict the label, y, given the observation region, Vt and a state, θ t .

The prediction step models the dependence between the objects with the
transition prior. In the case of lung segmentation, each object is dependent
on one of the previous objects, meaning

f (θ t |θ 0:t−1) = f (θ t |θ j), ∃ j ∈ {0,1,2, . . . , t−1}. (8)

The relation between the objects, f (θ t |θ j), is modeled using a Gaussian dis-
tribution whose parameters are learned from training data. In our applica-
tion, the poses of each lung are dependent on the initial carina landmark
point (Fig. 6). The stable landmarks, which are distributed on the boundary
of the lungs, are then dependent on the pose of the lung.

The full posterior, f (θ 0:t |V0:t), is approximated through sequential impor-

tance sampling, where a set of weighted particles (or samples), {θ j
t ,w

j
t }P

j=1,
is used to approximate the posterior at state t, and these particles are prop-
agated, in sequence, to the next object (see [31] for more details).
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Fig. 8 An illustration showing the spatial filtering process used when selecting stable
landmarks. The landmark with lowest error is selected on the bottom left of the lung,
then a region within that landmark is ignored for future selection (triangles marked
white). The process continues until no more vertices can be selected. Here we used a
large filter parameter of r = 100mm for illustration purposes.

3.1.3 Pose detection

The pose of each lung is represented with a 9 dimensional state vector, θ t =
{pt ,rt ,st}, containing a translation vector p∈R3, Euler angles for orientation
r, and an anisotropic scale, s. The 9 pose parameters are decomposed into
three sequential estimates of the respective 3 dimensional quantities [42, 21],

f (θ t |Vt) = f (pt |Vt) f (rt |pt ,Vt) f (st |pt ,rt ,Vt), (9)

allowing for efficient estimation by using fewer particles during inference.
For position, the classifier in (7) is trained using 3D Haar features, whereas
orientation and scale are estimated using steerable features [42].

The pose detection aligns the mean shape to the image, giving an initial
segmentation. Additional detail is incorporated into the segmentation by then
detecting the first three shape coefficients, θ t = {λ1,λ2,λ3} from (2), using
the HDN.

A uniform sampling of shape coefficients, λmin
k ≤ λk ≤ λmax

k , is used during
detection. The bounds, [λmin

k ,λmax
k ], are estimated from the shape coefficients

of the training data. These uniformly sampled coefficients are augmented with
the results of the pose estimation to get a candidate set of particles. Steerable
features extracted from the image volume at vertices of the mesh are used to
train the classifier in (7).

3.1.4 Refinement Using Stable Landmarks

The alignment of the shape models to the input volume through the above
described detection process is still sensitive to the appearance and shape
changes of pathologies. For this reason, we utilize a robust improvement of the
shape alignment that detects a set of stable landmark points on the surface
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of the lung [30]. This subset of landmark points are chosen as a stable subset
of mesh vertices by using the reliability of their corresponding detectors.

Training & Identifying Stable Landmarks During training, all the in-
put annotations are brought into correspondence using registration in order
to build the statistical shape model (§3.1.1). Each one of the mesh vertices
is then a potential landmark. Let pi j denote the location of landmark, i, in
training volume j. A position detector is trained for each landmark indepen-
dently, and the detected result for each detector gives a predicted landmark
location: di j. The covariance of the error for each detector is then computed
as Ci = ∑ j(di j−pi j)(di j−pi j)

>.
Landmarks that are stable should have low uncertainty, meaning that the

score
si = trace(Ci), (10)

should be low. Further, the selected landmarks should be spatially distributed
along the surface of the object. In order to select a subset of stable and well
distributed landmarks, a greedy selection scheme with a spatial filtering of
radius r is used. First, the landmark with the lowest si is greedily chosen.
Then the mesh vertices within radius r of this vertex on the mean mesh
are no longer considered. The process then continues by iteratively choosing
the next best landmark and removing nearby vertices from consideration (see
Fig. 8). Let L⊂{1,2, ...,N} denote the mesh indices of the selected landmarks.

The parameter r gives a trade-off between the spatial distribution of the
vertices and the stability of the chosen landmarks. In our experiments we
found that a radius of r = 20mm gives a good balance.

Alignment of Shape to Landmarks During detection, in the HDN frame-
work, the stable landmark positions are first predicted from the pose detection
in §3.1.3. The resulting detected position of the landmark gives a constraint
on where the corresponding vertex should move. As not all vertices have
corresponding stable landmarks, the entire statistical mesh model must then
be deformed to fit the detected landmark positions. This is accomplished by
finding a smoothly varying non-rigid transformation using a thin-plate spline
that transforms the input landmark vertices from their pose estimate d0

i
(§3.1.3) to their detected positions, di. The transform takes on the following
form

f (x) = ∑
i∈L

air2
i log(ri)+Ax, (11)

where ri = |x−d0
i | is the distance between a point x ∈R3 and the pre-image

of the landmark point. A is a 3× 4 affine transformation matrix, and ai
are 3×1 vector weights for each landmark point. The unknowns, A and ai,
are obtained by solving the linear system that arises when constraining the
transformation such that f (d0

i ) = di.
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3.2 Freeform refinement

The estimation of the stable landmarks in the previous section provide a
robust initial estimate of the lung surfaces. Although the landmarks provide
a more detailed initialization than the first three shape coefficients from the
preceding stage, a more detailed estimate is obtained through the use of a
freeform surface deformation approach [21] that is similar to the methods
used in the active shape model [6].

Given the input volume, V , the freeform surface deformation finds the
most likely mesh, M , within the linear span of the statistical shape model:

max f (M |V ) s.t. M ∈ span(S ). (12)

The above posterior is computed as an average on the surface of the mesh,
and at each surface point, the posterior is evaluates a discriminitive classifier:

f (M |V ) =
1
N ∑

vi

f (vi|V ) =
1
N ∑

vi

f (yi = 1|vi,ni,V ), (13)

where the random variable yi = {−1,+1} takes a value of +1 if the surface
boundary exists at point vi with normal ni in the input volume.

The statistical classifier for the boundary, f (yi = 1|vi,ni,V ), can take into
account such things as raw image intensity, spatial texture, or distance to
anatomical structures in order to discriminate between surface points either
on or off the lung boundary. We use a classifier that automatically selects
the best set of features [33]. If only healthy cases exist, the classifier will
pick features like image gradient or raw intensity. However, robustness to
pathological cases can be obtained by ensuring pathological cases exist in
training.

Instead of maximizing (12) directly using the shape coefficients and pose
of the shape model, the freeform refinement performs a sequence of local per-
vertex optimizations followed by a projection of the shape back into the span
of the shape space. The local optimization for a vertex, vi, searches for the
best displacement, di ∈ [−τ,τ], along the normal, ni by maximizing the score
of the classifier:

di = argmax
−τ≤d≤τ

f (vi + dni|V ), (14)

where τ defines a local search range around the point. The vertex position is
then updated with the best displacement, vi ← vi + dini. As this process is
done independently for each vertex, the resulting surface may be irregular.
The projection of the displaced shape into the shape space regularizes the
result and ensures a valid shape.

Several iterations of the above local optimization and regularization steps
are performed, with the search range, τ, being reduced at each iteration.
In the final iterations, when the search range is small, the projection of the
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mesh into the shape space is replaced with mesh smoothing [21]. This form of
regularization gives a more detailed shape by allowing the surface to deviate
from span(S ).

3.3 Fine-scale Refinement

The detection results from the previous section ensure the lung surface en-
compasses tumors and pathological regions, but the explicit mesh represen-
tation is ineffective to represent fine-scale detail. In the final phase, we use
an energy-based level set refinement. In addition to the common data and
regularization terms, our energy includes a term to remove overlap between
lungs (e.g., at the anterior/posterior junctions), and another term to keep the
refined solution close to the detection meshes that are output from the pre-
vious phase (§3.2). This energy framework can easily incorporate constraints
from other adjacent structures such as the heart or liver to further improve
the segmentation accuracy [18].

The detected lung surfaces, Ci, are first converted to signed distance func-
tions, Φi(x) : Ω ⊂R3 7→R where |∇Φi(x)|= 1 and Ci = {x|Φi(x) = 0}. Further,
Φi(x) > 0 if x is inside Ci, and Φi(x) < 0 outside Ci (see [5] and references
within for more details). Then for each organ we minimize the energy pro-
posed by Kohlberger et al. [18]:

E(Φi;{Φ j} j 6=i) := Ed(Φi)︸ ︷︷ ︸
data

+Es(Φi)︸ ︷︷ ︸
smooth

+ ∑
j∈No

j

Eo(Φi,Φ j)︸ ︷︷ ︸
overlap

+Ep(Φi,Φ
0
i )︸ ︷︷ ︸

prior

. (15)

The standard region-based data energy, Ed, measures deviation of the appear-
ance of the inside and outside regions from their respective distributions [5],

Ed(Φi) :=−α

∫
Ω

H(Φi) log(pin
i (I(x)|Φi))+(1−H(Φi)) log(pout

i (I(x)|Φi))dx,

(16)
where H denotes the Heaviside function. Here, the probability of intensi-

ties belonging to the inside or outside of the object, pin/out
i , are modeled

with non-parametric Parzen densities (see [7]). This data energy will push
the segmentation surface to occupy regions that look similar to its intensity
distribution. On the other hand, when the intensity distributions between
foreground (lung) and background (body) overlap, this term will have less
influence. This happens for diseased cases with large tumors or diffuse lung
disease cause pin

i to contain high density tissue.
The smoothness term in (15) penalizes surface area of the desired segmen-

tation,

Es(Φi) := γ

∫
Ω

|∇H(Φi)|dx, (17)
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Fig. 9 An illustration of the spatially varying exterior surface constraint weights for
the left and right lung on the surface of the detected points, {p j}. The dark regions
map to ωout = 0.1 and the white regions map to ωout = 5. Larger weights are given in
a region near the main bronchi.

and is balanzed with the weight coefficient γ.
The overlap term, Eo(Φi,Φ j), penalizes overlap between organ i and a set

of neighboring organs, No
i :

Eo(Φi,Φ j) := β

∫
Ω

H(Φi)H(Φ j)Φ jdx. (18)

As intended, this term only affects regions that lie within the intersection of
both surfaces, and the constraint is proportional to the depth of penetration
into the surface Φ j.

Finally, the prior shape term prefers the surface to be close to the detected
shape, Φ0

i :

Ep(Φi,Φ
0
i ) :=

∫
Ω

ω
in
l(x)H(Φ

0
i (x)−Φi(x))︸ ︷︷ ︸

Inside deviations

+ω
out
l(x)H(Φi(x)−Φ

0
i (x))︸ ︷︷ ︸

Outside deviations

dx. (19)

The prior term utilizes a set of positive valued spatially varying surface
weights ω in

l(x) and ωout
l(x) to control the penalization of the surface deviations

occurring either inside or outside the detected shape. These surface weights
are specified on the surface of the detected mesh, {p j}, which is pre-annotated
with corresponding weights, {ω∗j }:

ω
∗
l(x) = ω

∗
j where j = argmin j‖x−p j‖2. (20)

To maintain a consistent weighting over the energy minimization, the points,
p j, are also evolved during the minimization [19].

In practice, since our detection result is typically undersegmented, we use
a large uniform penalization for the interior deviations, ω in

l(x) = 10. In order to

allow the fine-scale refinement to fill in small details, we use a smaller weight
for the exterior surface deviations and constrain the solution to not deviate
much from the detection in the region of the airways. Fig. 9 illustrates the
spatially varying exterior weights, ωout

l(x).
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Fig. 10 Modules making up the pose estimation are connected by a set of pose
candidates, with each detector augmenting more information to its output candidates.
All Modules consume the CT volume as input.

Fig. 11 The full pipeline uses the pose estimation, with the later modules performing
consecutive refinements of the mesh.

The contribution of the other terms are balanced by qualitative tuning on
a few cases. Here we used a weight of α = 2 for the data term, a smoothness
weight of γ = 15, to keep the lung surface smooth, and a large weight on the
overlap term, β = 1000.

3.3.1 Optimization

Each of the lungs (and possibly other adjacent organs) has a corresponding
energy in the form of (15), and the minimizers of these energies are coupled by
the overlap penalization term (19). In practice, interleaving gradient descents
for each of the organs is sufficient to get a desired solution [18].

Specifically, each lung is refined along the negative gradient of the energy
term,

∂Φi

∂ t
u

(Φ
t+1
i −Φ t

i )

δ t
=−

∂E(Φi;{Φ t
j} j 6=i)

∂Φi
, (21)

where the gradient for the coupled overlap term uses the solution from the
previous time, Φ t

j. Each organ is then evolved along (21) in lockstep using a
discrete time step δ t.

The gradient descent is terminated when either a fixed number of iterations
is reached or if the movement of the surface in a given iteration falls below
a predefined threshold. For an efficient solution, the level set surfaces are
represented with a narrow-band scheme within ±2 voxels of the zero crossing.
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4 A Software Architecture for Detection and
Segmentation

In order to implement our lung segmentation algorithm, we use an Integrated
Detection Network (IDN) [29], which is a modular design that specifically
caters to such detection networks. IDN promotes modularity and reusability
through a basic abstraction that decomposes algorithms into the operations,
which are called Modules, and the Data that these modules consume and
produce. In contrast to a blackboard model, where information is globally
shared through a blackboard, e.g., as done by Brown et al. for lung segmen-
tation [4], the connections between modules illustrate the data flow of the
entire algorithm. Data is only shared with a module if it is necessary.

Each Module provides a set of input slots for incoming Data and owns
a (possibly empty) set of output Data objects. Different Module operations
may be connected as long as their connecting Data object type agrees with
the respective input/output types of the Module. The connections between
these Modules through their Data forms an acyclic graph.

Modules and Data carry all the necessary information to allow both train-
ing and detection. In this way, the spatial dependencies between objects in
the HDN can be directly encoded with an IDN network, and this same net-
work of Modules can be used to train the classifiers as well as to perform the
detection and segmentation.

4.1 Pose Detection Modules

Pose detection Modules parallel their respective HDN detections and take as
input a set of candidate poses and produce an augmented set of candidates,
where, for example, the output of the orientation detector contains both
position and orientation. Estimation of the object pose and the first few PCA
coefficients is achieved by connecting the individual detectors, as illustrated
in Fig. 10.

4.2 Segmentation Modules

The main components of the segmentation are also decomposed into indepen-
dent modules. The stable landmark detector uses an input mesh to predict
the locations of the stable landmarks, and outputs a mesh deformed to fit
these landmark positions. The learning-based boundary refinement refines a
mesh, as does the level set refinement (Fig. 11). All of these elements can
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be interchanged provided the input/output types agree. Notice that the final
IDN graph parallels the original flowchart of the algorithm in Fig. 6.

5 Experiments

In this section, we perform a qualitative and quantitative analysis at several
stages of our algorithm1. We use a data set of 260 diagnostic CT scans, which
has images of varying contrast and slice thickness (ranging from 0.5mm to
5mm). The lung surfaces have been manually annotated in each of these scans
by an expert. This data was randomly partitioned into two sets: 192 volumes
that were used to train our detectors, and another 68 volumes that were used
for testing. The shape models (§3.1.1) computed from the input annotations
have a total of 614 vertices for each the left and right lung.

As the stable landmarks are selected by their error rates, we first illustrate
the error rates for all the candidate landmarks by computing the accuracy
on the training data. We then show how the automatic greedy selection of
spatially varying landmarks tends to choose a set of well distributed land-
marks that are close to anatomical structures. We then demonstrate on test-
ing data how this landmark-based initialization helps improve the results over
the pose+PCA detector on challenging cases. Finally, we illustrate how the
fine-scale refinement further improves the accuracy, even in the presence of
pathologies.
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Fig. 12 Sorted mean errors of the 614 landmarks computed from all training volumes
for the right lungs, and the 143 selected landmarks obtained using the spatial filtering
with parameter of r = 20mm visualized on the mesh.

1 The initial analysis and comparison of the performance of the boundary landmarks
also appears in our earlier conference publication [30]
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Table 1 Testing results of symmetrical point-to-mesh comparisons (in mm’s) be-
tween the detected results and annotations for both lungs, with and without stable
landmark detection [30], and also with the final level set refinement presented in §3.3.

Lung Landmark Level set Mean (std.) Med. Min Max 80%

right no no 2.35 ± 0.86 2.16 1.40 6.43 2.57
right yes no 1.98 ± 0.62 1.82 1.37 4.87 2.18
right yes yes 1.30 ± 0.64 1.12 0.91 4.60 1.38

left no no 2.31 ± 2.42 1.96 1.28 21.11 2.22
left yes no 1.92 ± 0.73 1.80 1.19 6.54 2.15
left yes yes 1.34 ± 0.77 1.13 0.93 6.78 1.39

5.1 Landmark errors

Figure 12 illustrates the landmark scores (computed as the average distance
between detected and ground truth) for all 614 landmarks computed on the
training set for the right lung (as in §3.1.4). The larger errors on the right of
the plot, show that some of the landmarks are less reliable; these landmarks
are less likely to be selected. For the landmarks with lower scores, some of
the error is attributed to slight misalignments that occur during the corre-
spondence establishment phase used to generate the ground truth landmark
positions. When using a spatial radius of r = 20mm, a total of 143 landmarks
were chosen for the right lung and 133 for the left lung.

For illustration purposes, by increasing the spatial filtering radius to r =
70mm, we show that the greedy selection is effective in choosing a distributed
set of 12 stable landmarks (Fig. 13). The resulting landmarks are often chosen
close to anatomical structures, such as ribs and vertebrae. The spatial filtering
also ensures that some landmarks are also selected near the top and bottom
of the lungs.

5.2 Segmentation Accuracy and Quality

In this next experiment, we analyze the improvement that is attained at sev-
eral stages of the algorithm on our testing set. First, we ran the algorithm
up to the freeform refinement without the use of the stable landmarks (i.e.,
skipping §3.1.4). We then included the stable landmark stage of the algo-
rithm. And finally, we then ran the full algorithm including the level set
refinement. For comparison, the symmetric surface-to-surface distance was
computed between the detected and ground truth segmentation.

The results in Table 1 show that the inclusion of the stable landmarks gave
a significant (p < 0.05) decrease in the surface-to-surface distance for both
the left and right lung [30]. In the case of the left lung, notice the decrease
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Fig. 13 Using a larger spatial filter radius (70mm), the twelve strongest landmarks
selected of the 614 mesh vertices are shown. These landmarks are selected near dis-
tinctive anatomical structures such as ribs (3, 4, 5, 12), vertebrae (1, 2) and top (5)
and bottom of the lung (9, 10, 11). Reprinted from [30] with kind permission from
Springer Science and Business Media.

in the maximum error. This is caused by the stable landmarks correcting
a failure case. Finally, notice that the fine-scale level set refinement further
reduced this error by filling in the small scale details.

The main advantage of the stable landmarks is the ability to overcome a
poor initialization that can occur due to appearance variability in pathologies.
Figure 14 illustrates several qualitative examples of pathologies where the
robust landmarks lead to an improved result of the free-form refinement.

As the fine-scale surface refinement is constrained by the initial surface
estimate, a good initialization is important for final accuracy. Figure 15 illus-
trates that the final level set refinement fills in the small regions, and that the
segmentation still includes the large pathological regions due to the surface
prior constraint.

In Fig. 16, we demonstrate that all the terms of the level set energy are
necessary. When the prior and overlap terms are not used (only the data
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Fig. 14 Comparison of freeform boundary results without using the stable landmarks
(left column of every set) and with stable landmark detection (right column of every
set). Reprinted from [30] with kind permission from Springer Science and Business
Media.

and regularization terms in (15)), the resulting segmentation excludes the
pathological region even though the initialization includes this region. Fur-
ther, without the prior term, the level set leaks into the airways and results
in a non-smooth surface near the hilum. Enabling the prior term fixes these
problems, but the segmentation still has overlap near the anterior junction
(middle of Fig. 16). Only when both the prior and overlap terms are enabled
is the desired segmentation achieved.

6 Conclusion

In this article we presented a multi-stage learning method for segmenting
challenging lung cases in thoracic CT. The algorithm overcomes the diversity
of lung appearance in the presence of pathologies through the use of a sta-
tistical shape model and by detecting robust landmarks that use anatomical
context outside the lung.

As pathologies may only affect a portion of the lung, it is important to
also use a fine-scale refinement to obtain highly accurate segmentations in the
healthy regions. Graph-based methods can be used for this refinement [12],
but we propose to use a level set approach that uses adaptive region inten-
sity constraints and enforces that the refined surface cannot deviate too far
from the robustly initialized detected surfaces. We have illustrated that the
resulting segmentation is robust to a variety of pathologies, including high
density tissue associated with diffuse lung disease as well as tumors.
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Fig. 15 Comparison of the basic boundary detection (top) and fine-scale level set re-
finement (bottom) on three example cases. The basic boundary detection gives a good
coarse estimate that includes the high density tissue, and the fine-scale refinement
remains close in these regions but also includes the fine-scale voxel-level details.

Intelligent editing may still be necessary to fix up failures in extreme
cases [17]. However, the same principles used in our automatic algorithm,
such as the use of machine learning to integrate shape, texture and anatomi-
cal cues, can be used to guide the development of such interactive techniques.
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